1.Construction of controllable polyethylene glycol bioactive coating with hemocompatibility from the surface of modified glass substrate.
Yu WEI ; Jingxun ZHANG ; Yuzhong ZHANG ; Xiantao FENG ; Xuanhuang YANG
Journal of Biomedical Engineering 2019;36(2):260-266
A diblock copolymer, poly(ethylene glycol) methacrylate-block-glycidyl methacrylate (PEGMA-GMA), was prepared on glass substrate by surface-initiated atom transfer radical polymerization (SI-ATRP), and endothelial specific peptide Arg-Glu-Asp-Val (REDV) was immobilized at the end of the PEGMA-GMA polymer brush by ring opening reaction through the rich epoxy groups in the GMA. The structure and hydrophilicity of the polymer brushes were characterized by static water contact angle, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results showed that the REDV modified copolymer brushes were successfully constructed on the glass substrates. The REDV peptide immobilized onto surface was quantitatively characterized by ultraviolet-visible spectroscopy (UV-VIS). The blood compatibility of the coating was characterized by recalcification time and platelet adhesion assay. The results showed that the polymer coating had good blood compatibility. The multifunctional active polymer coating with PEGMA and peptide produced an excellent prospect in surface construction with endothelial cells selectivity.
Biocompatible Materials
;
Cells, Cultured
;
Endothelial Cells
;
Glass
;
Humans
;
Immobilized Proteins
;
Methacrylates
;
Oligopeptides
;
Platelet Adhesiveness
;
Polyethylene Glycols
;
Polymers
;
Surface Properties
2.Inhibiting Smooth Muscle Cell Proliferation via Immobilization of Heparin/Fibronectin Complexes on Titanium Surfaces.
Gui Cai LI ; Qi Fei XU ; Ping YANG
Biomedical and Environmental Sciences 2015;28(5):378-382
The aim of this study was to investigate the inhibitory effect of heparin/fibronectin (Hep/Fn) complexes on neointimal hyperplasia following endovascular intervention. Hep/Fn complexes were immobilized onto titanium (Ti) surfaces, with subsequent X-ray photoelectron spectroscopy (XPS), Toluidine Blue O (TBO) and immunohistochemistry methods were used to characterize surface properties. Smooth muscle cell (SMC) cultures were used to evaluate the effect of Hep/Fn complexes on SMC proliferation. Results showed that Hep/Fn complexes successfully immobilized onto Ti surfaces and resulted in an inhibition of SMC proliferation. This study suggests that Hep/Fn surface-immobilized biomaterials develop as a new generation of biomaterials to prevent neointimal hyperplasia, particularly for use in cardiovascular implants.
Biocompatible Materials
;
Cell Proliferation
;
drug effects
;
physiology
;
Cells, Cultured
;
Fibronectins
;
chemistry
;
pharmacology
;
Heparin
;
chemistry
;
pharmacology
;
Humans
;
Immobilized Proteins
;
chemistry
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
drug effects
;
physiology
;
Surface Properties
;
Titanium
;
chemistry
;
Umbilical Arteries
3.Production of L(+)-tartaric acid by immobilized Rhizobium strain BK-20.
Xiang LAN ; Wenna BAO ; Haifeng PAN ; Zhipeng XIE ; Jianguo ZHANG
Chinese Journal of Biotechnology 2014;30(2):315-319
The cis-epoxysuccinate hydrolase (CESH) from Rhizobium strain BK-20 is the key enzyme for L(+)-tartaric acid production. To establish a highly efficient and stable production process, we first optimized the enzyme production from Rhizobium strain BK-20, and then developed an immobilized cell-culture process for sustained production of L(+)-tartaric acid. The enzyme activity of free cells reached (3 498.0 +/- 142.6) U/g, and increased by 643% after optimization. The enzyme activity of immobilized cells reached (2 817.2 +/- 226.7) U/g, under the optimal condition with sodium alginate as carrier, cell concentration at 10% (W/V) and gel concentration at 1.5% (W/V). The immobilized cells preserved high enzyme activity and normal structure after 10 repeated batches. The conversion rate of the substrate was more than 98%, indicating its excellent production stability.
Alginates
;
chemistry
;
Cells, Immobilized
;
Glucuronic Acid
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Hydrolases
;
metabolism
;
Rhizobium
;
enzymology
;
metabolism
;
Tartrates
;
metabolism
4.Effects of chemically modified sugarcane bagasse on butanol production by immobilized Clostridium acetobutylicum XY16.
Xiangping KONG ; Aiyong HE ; Jianan CHEN ; Wufang CHEN ; Chunyan YIN ; Pan CHEN ; Hao WU ; Min JIANG
Chinese Journal of Biotechnology 2014;30(2):305-309
Sugarcane bagasse modified by polyethylenimine (PEI) and glutaraldehyde (GA) was used as a carrier to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. The effects of chemically modified sugarcane bagasse on batch and repeat-batch fermentations were investigated. Batch fermentation was conducted with an addition of 10 g/L modified sugarcane bagasse and 60 g/L glucose, resulting in a high solvent concentration of 21.67 g/L and productivity of 0.60 g/(L x h) with the treatment of 4 g/L PEI and 1 g/L GA. Compared to the fermentations by free cells and immobilized cells on unmodified sugarcane bagasse, the productivity increased 130.8% and 66.7%, respectively. The fibrous-bed bioreactor also maintained a stable butanol production during repeat-batch fermentations, achieving a maximum productivity of 0.83 g/(L x h) with a high yield of 0.42 g/g.
Batch Cell Culture Techniques
;
Bioreactors
;
Butanols
;
metabolism
;
Cells, Immobilized
;
Cellulose
;
metabolism
;
Clostridium acetobutylicum
;
metabolism
;
Fermentation
;
Saccharum
;
chemistry
5.Serotype- and serogroup-specific detection of African horsesickness virus using phage displayed chicken scFvs for indirect double antibody sandwich ELISAs.
Wouter VAN WYNGAARDT ; Cordelia MASHAU ; Isabel WRIGHT ; Jeanni FEHRSEN
Journal of Veterinary Science 2013;14(1):95-98
There is an ongoing need for standardized, easily renewable immunoreagents for detecting African horsesickness virus (AHSV). Two phage displayed single-chain variable fragment (scFv) antibodies, selected from a semi-synthetic chicken antibody library, were used to develop double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) to detect AHSV. In the DAS-ELISAs, the scFv previously selected with directly immobilized AHSV-3 functioned as a serotype-specific reagent that recognized only AHSV-3. In contrast, the one selected with AHSV-8 captured by IgG against AHSV-3 recognized all nine AHSV serotypes but not the Bryanston strain of equine encephalosis virus. Serving as evidence for its serogroup-specificity. These two scFvs can help to rapidly confirm the presence of AHSV while additional serotype-specific scFvs may simplify AHSV serotyping.
African horse sickness virus/*isolation & purification
;
Animals
;
Antibodies, Immobilized
;
Antibodies, Viral/*immunology
;
Cercopithecus aethiops
;
Chickens
;
Enzyme-Linked Immunosorbent Assay/methods/*veterinary
;
Immunoglobulin G
;
*Peptide Library
;
Serologic Tests/methods/veterinary
;
Serotyping
;
Single-Chain Antibodies/*immunology
;
Vero Cells
6.Immobilization of mixed bacteria by microcapsulation for hydrogen production--a trial of pseudo "Cell Factory".
Qianlan MA ; Dongqiang LIN ; Shanjing YAO
Chinese Journal of Biotechnology 2010;26(10):1444-1450
Sodium cellulose sulfate (NaCS)/Ploy-dimethyl-dially-ammonium-chloride (PDMDAAC) microcapsules were used as a novel pseudo "Cell Factory" to immobilize mixed bacteria for hydrogen production under anaerobic conditions. Compared to free cells, the hydrogen production was increased more than 30% with NaCS/PDMDAAC microcapsules as the pseudo "Cell Factory". The biomass was increased from 1.5 g/L in free cell culture to 3.2 g/L in the pseudo "Cell Factory". This pseudo "Cell Factory" system showed the excellent stability during 15 repeated-batches. The hydrogen yield maintained 1.73-1.81 mol H2/mol glucose. The fermentation cycle was shortened from 48 h to 24 h, resulting in an increase of 198.6% in the hydrogen production rate. There were high percentage of butyric acid and acetic acid in the culture broth, which meant that the pseudo "Cell Factory" established in the present work could be used for the multi-product system.
Bacteria
;
classification
;
genetics
;
metabolism
;
Capsules
;
Cells, Immobilized
;
metabolism
;
Cellulose
;
analogs & derivatives
;
chemistry
;
Fermentation
;
Hydrogen
;
metabolism
;
Polyethylenes
;
chemistry
;
Quaternary Ammonium Compounds
;
chemistry
7.The effect of co-immobilized TNF-alpha/IFN-gamma on mitochondrial membrane potential of HeLa cells.
Lianmin ZHONG ; Wenwen WANG ; Huimin TAO ; Yanqing GUAN
Journal of Biomedical Engineering 2009;26(5):972-977
This study inquired into the mechanisms of co-immobilized cytokines and free cytokines-induced apoptosis on HeLa cells. With the use of photochemical fixed method, TNF-alpha/IFN-gamma were co-immobilized on a 24-well polystyrene culture plate. HeLa cells were stained with fluorescent probe JC-1 to detect the changes of mitochondrial membrane potential (deltapsim), and then were examined by flow cytometry. The results showed that co-immobilized cytokines could induce the apoptosis of HeLa cells in a dose-independent manner. When treated with low-dose of co-immobilized cytokines (20ng/ml), the mitochondrial membrane potential (deltapsim) of HeLa cells continually decreased in 6 days. These indicate that low dose co-immobilized cytokines have a long-term of apoptosis-inducing effect on HeLa cells. We assume that there is close relationship between the mitochondrial membrane potential decrease and the apoptosis of HeLa cells.
Apoptosis
;
drug effects
;
Dose-Response Relationship, Drug
;
HeLa Cells
;
Humans
;
Immobilized Proteins
;
pharmacology
;
Interferon-gamma
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Membranes
;
drug effects
;
physiology
;
Tumor Necrosis Factor-alpha
;
pharmacology
8.Up-regulation of Fas is related to apoptosis of HeLa cells induced by co-immobilized TNF-alpha/IFN-gamma.
Ruifang SUN ; Zeqin FANG ; Jianting ZHENG ; Zherui WU ; Jinwei QIU ; Weifang LI ; Dongqin ZHAO ; Shujun LIANG ; Yanqing GUAN
Journal of Biomedical Engineering 2009;26(3):615-619
This study was aimed to examine the expression of apoptosis-associated gene Fas in HeLa cell, explore the effects of the co-immobilized cytokines (tumor necrosis factor-alpha and interferon-gamma), and probe the potential mechanism of action. The preparation and application of the research couple IFN-gamma and TNF-alpha to the polystyrene cell culture plate were performed using the Photo-immobilization method, with different doses (20 ng/well and 200 ng/well) and synthesized optical active material. HeLa cells were treated with cytokines for two dose and 1, 3, 6 days. The result showed that the free cytokines induced HeLa apoptosis quickly, yet the HeLa apoptosis induced by co-immobilized cytokines had longer effect.
Apoptosis
;
drug effects
;
genetics
;
Drug Synergism
;
HeLa Cells
;
Humans
;
Immobilized Proteins
;
chemistry
;
pharmacology
;
Interferon-gamma
;
chemistry
;
pharmacology
;
Tumor Necrosis Factor-alpha
;
chemistry
;
pharmacology
;
Up-Regulation
;
fas Receptor
;
metabolism
9.Stability of whole cell biocatalyst for biodiesel production from renewable oils.
Ting SUN ; Wei DU ; Dehua LIU ; Wei LI ; Jing ZENG ; Lingmei DAI
Chinese Journal of Biotechnology 2009;25(9):1379-1385
Lipase-mediated biodiesel production becomes increasingly important because of mild reaction conditions, pollution free during the process and easy product separation. Compared with traditional immobilized lipase, whole cell biocatalyst is promising for biodiesel production because it is easy to prepare and has higher enzyme activity recovery. Rhizopus oryzae IFO4697 can be used as the catalyst for biodiesel production. To further study the stability of the whole cell biocatalyst is extremely important for its further application on large scale. This paper focuses on the stability study of Rhizopus oryzae IFO4697 when used for the methanolysis of renewable oils for biodiesel production. The results showed that water content was important for achieving high catalytic activity and good stability of the biocatalyst. The optimum water content was found to be 5%-15%. Both particle size and desiccation methods showed no obvious effect on the stability of the biocatalyst. With GA cross-linking pretreatment, the stability of the biocatalyst could be improved significantly. When Rhizopus oryzae IFO4697 repeatedly used for next batch reaction, direct vacuum filtration was found to be a good way for the maintenance of good stability of the biocatalyst. Under the optimum reaction conditions, the methyl ester yield could keep over 80% during 20 repeated reaction batches.
Biocatalysis
;
Bioelectric Energy Sources
;
microbiology
;
Biofuels
;
Cells, Immobilized
;
metabolism
;
Lipase
;
metabolism
;
Rhizopus
;
metabolism
;
Soybean Oil
;
metabolism
10.Telomerase expression is not involved in aging process of human keratinocytes induced by UVB irradiation.
Yi-Na WANG ; Wei WU ; Guo-Ping PENG ; Hong FANG
Journal of Zhejiang University. Medical sciences 2009;38(3):283-288
OBJECTIVETo investigate the mechanism involved in aging process of immortalized human keratinocyte (HaCaT) and primary human epidermis keratinocyte of adults (HEKa) irradiated by ultraviolet B(UVB).
METHODSHEKa and HaCaT were repeatedly exposed to UVB at a subcytotoxic level. SA-beta-Gal staining was performed to evaluate the senescence state; flow cytometry was applied to detect the changes of apoptosis, necrosis and cell cycle. Intracellular levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by ELISA method. Western blot was performed to detect the expression pattern of redox protein p66Shc and RT-PCR was performed to determine the mRNA level of human telomerase reverse transcriptase (hTERT).
RESULTStrong positive SA-beta-Gal staining was observed in both HEKa cell and HaCaT cells after UVB irradiation. Apoptosis rate increased from (1.81 +/-0.25)% to (4.43 +/-0.28)% and necrosis rate increased from (0.05 +/-0.01)% to (0.10 +/-0.03)% in HaCaT cell, but no marked arrest of cell cycle was observed during UVB irradiation. As a contrast, apoptosis rate of in HEKa cells significantly increased from (0.65 +/-0.05)% to (59.53 +/-2.35)%, and the necrosis rate in HEKa cells also reached (3.89 +/-0.24)%(P<0.05). Growth arrest in G0/G1 phase was also found in HEKa cells. In both cell lines, intracellular level of SOD decreased and MDA increased remarkably after UVB exposure, and an increased expression of p66Shc protein was also observed. High level of hTERT mRNA was detected in HaCaT cells and UVB exposure had little effect on its expression.
CONCLUSIONThe stress-induced premature senescence (SIPS) in HaCaT and HEKa cell lines by UVB irradiation might be closely associated with increased intracellular levels of oxidative stress, not related to the telomerase expression.
Apoptosis ; Cell Line ; Cells, Immobilized ; radiation effects ; Cellular Senescence ; physiology ; radiation effects ; Humans ; Keratinocytes ; cytology ; radiation effects ; Malondialdehyde ; metabolism ; Skin ; cytology ; Superoxide Dismutase ; metabolism ; Telomerase ; genetics ; metabolism ; radiation effects ; Ultraviolet Rays ; beta-Galactosidase ; pharmacology

Result Analysis
Print
Save
E-mail