1.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
2.Alamandine inhibits pathological retinal neovascularization by targeting the MrgD-mediated HIF-1α/VEGF pathway.
Kun ZHAO ; Yaping JIANG ; Wen HUANG ; Yukang MAO ; Yihui CHEN ; Peng LI ; Chuanxi YANG
Journal of Zhejiang University. Science. B 2025;26(10):1015-1036
Retinopathy of prematurity (ROP) is a vision-threatening disorder that leads to pathological growth of the retinal vasculature due to hypoxia. Here, we investigated the potential effects of alamandine, a novel heptapeptide in the renin-angiotensin system (RAS), on hypoxia-induced retinal neovascularization and its underlying mechanisms. In vivo, the C57BL/6J mice with oxygen-induced retinopathy (OIR) were injected intravitreally with alamandine (1.0 μmol/kg per eye). In vitro, human retinal microvascular endothelial cells (HRMECs) were utilized to investigate the effects of alamandine (10 μg/mL) on proliferation, apoptosis, migration, and tubular formation under vascular endothelial growth factor (VEGF) stimulation. Single-cell RNA sequencing (scRNA-seq) matrix data from the Gene Expression Omnibus (GEO) database and RAS-related genes from the Molecular Signatures Database (MSigDB) were sourced for subsequent analyses. By integrating scRNA-seq data across multiple species, we identified that RAS-associated endothelial cell populations were highly related to retinal neovascularization. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed a significant decrease in alamandine levels in both the serum and retina of OIR mice compared to those in the control group. Next, alamandine ameliorated hypoxia-induced retinal pathological neovascularization and physiologic revascularization in OIR mice. In vitro, alamandine effectively mitigated VEGF-induced proliferation, scratch wound healing, and tube formation of HRMECs primarily by inhibiting the hypoxia-inducible factor-1α (HIF-1α)/VEGF pathway. Further, coincubation with D-Pro7 (Mas-related G protein-coupled receptor D (MrgD) antagonist) hindered the beneficial impacts of alamandine on hypoxia-induced pathological angiogenesis both in vivo and in vitro. Our findings suggested that alamandine could mitigate retinal neovascularization by targeting the MrgD-mediated HIF-1α/VEGF pathway, providing a potential therapeutic agent for OIR prevention and treatment.
Animals
;
Retinal Neovascularization/prevention & control*
;
Mice, Inbred C57BL
;
Vascular Endothelial Growth Factor A/metabolism*
;
Humans
;
Mice
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Oligopeptides/therapeutic use*
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Endothelial Cells/drug effects*
;
Retinopathy of Prematurity/drug therapy*
;
Apoptosis/drug effects*
;
Cell Movement/drug effects*
;
Renin-Angiotensin System/drug effects*
;
Cells, Cultured
3.Buyang Huanwu Decoction reduces mitochondrial autophagy in rheumatoid arthritis synovial fibroblasts in hypoxic culture by inhibiting the BNIP3-PI3K/Akt pathway.
Junping ZHAN ; Shuo HUANG ; Qingliang MENG ; Wei FAN ; Huimin GU ; Jiakang CUI ; Huilian WANG
Journal of Southern Medical University 2025;45(1):35-42
OBJECTIVES:
To investigate the role of the BNIP3-PI3K/Akt signaling pathway in mediating the inhibitory effect of Buyang Huanwu Decoction (BYHWT) on mitochondrial autophagy in human synovial fibroblasts from rheumatoid arthritis patients (FLS-RA) cultured under a hypoxic condition.
METHODS:
Forty normal Wistar rats were randomized into two groups (n=20) for daily gavage of BYHWT or distilled water for 7 days to prepare BYHWT-medicated or control sera. FLS-RA were cultured in routine condition or exposed to hypoxia (10% O2) for 24 h wigh subsequent treatment with IL-1β, followed by treatment with diluted BYHWT-medicated serum (5%, 10% and 20%) or control serum. AnnexinV-APC/7-AAD double staining and T-AOC kit were used for detecting apoptosis and total antioxidant capacity of the cells, and the changes in ROS, ATP level, mitochondrial membrane potential and Ca2+ homeostasis were analyzed. The changes in mRNA and protein expressions of BNIP3, PI3K and AKT and mRNA expressions of LC3, Beclin-1 and P62 were detected using RT-qPCR and Western blotting.
RESULTS:
Treatment with BYHWT-medicated serum dose-dependently lowered apoptosis rate of IL-1β-induced FLS-RA with hypoxic exposure. The treatment significantly decreased T-AOC concentration, increased ROS production, autophagosome formation and ATPase levels, and lowered mitochondrial membrane potential and Ca2+ level in the cells. In IL-1β-induced FLS-RA with hypoxic exposure, treatment with BYHWT-medicated serum significantly increased BNIP3 protein expression, decreased the protein expressions of PI3K and AKT, increased the mRNA expressions of BNIP3 and P62, and lowered the mRNA expressions of PI3K, AKT, LC3 and Beclin-1 without significantly affecting Beclin-1 protein expression. The cells treated with 5% and 10% BYHWT-medicated serum showed no significant changes in LC3 expression.
CONCLUSIONS
BYHWT inhibits mitochondrial autophagy in IL-1β-induced FLS-RA with hypoxic exposure possibly by inhibiting BNIP3-mediated PI3K/AKT signaling pathway.
Drugs, Chinese Herbal/pharmacology*
;
Arthritis, Rheumatoid/pathology*
;
Animals
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Autophagy/drug effects*
;
Humans
;
Fibroblasts/cytology*
;
Rats, Wistar
;
Membrane Proteins/metabolism*
;
Rats
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Mitochondria/metabolism*
;
Cells, Cultured
;
Proto-Oncogene Proteins/metabolism*
;
Apoptosis/drug effects*
;
Cell Hypoxia
;
Synovial Membrane/cytology*
;
Male
;
Mitochondrial Proteins
4.Inhibiting miR-155-5p promotes proliferation of human submandibular gland epithelial cells in primary Sjogren's syndrome by negatively regulating the PI3K/AKT signaling pathway via PIK3R1.
Yuru ZHANG ; Lei WAN ; Haoxiang FANG ; Fangze LI ; Liwen WANG ; Kefei LI ; Peiwen YAN ; Hui JIANG
Journal of Southern Medical University 2025;45(1):65-71
OBJECTIVES:
To investigate the mechanism mediating the regulatory effect of miR-155-5p on proliferation of human submandibular gland epithelial cells (HSGECs) in primary Sjogren's syndrome (pSS).
METHODS:
Dual luciferase reporter assay was used to verify the targeting relationship between miR-155-5p and the PI3K/AKT pathway. In a HSGEC model of pSS induced by simulation with TRAIL and INF-γ, the effects of miR-155-inhibitor-NC or miR-155 inhibitor on cell viability, cell cycle, apoptosis and proliferation were evaluated using CKK8 assay, flow cytometry and colony formation assay. ELISA and RT-PCR were used to detect the expressions of inflammatory cytokines and miR-155-5p mRNA in the cells; Western blotting was performed to detect the expressions of proteins in the PI3K/AKT signaling pathway.
RESULTS:
Dual luciferase assay showed that miR-155-5p targets the PI3K/AKT pathway via PIK3R1 mRNA. The HSGEC model of pSS showed significantly decreased cell viability, cell clone formation ability and expressions IL-10 and IL-4 and increased cell apoptosis, cell percentage in G2 phase, expressions of TNF‑α, IL-6, miR-155-5p and PIK3R1 mRNA, p-PI3K/PI3K ratio, p-Akt/AKT ratio, and PIK3R1 protein expression. Treatment of the cell models with miR-155 inhibitor significantly increased the cell viability, G1 phase cell percentage, colony formation ability, and expressions of IL-10 and IL-4 levels, and obviously reduced cell apoptosis rate, G2 phase cell percentage, expressions of TNF-α, IL-6, miR-155-5p and PIK3R1 mRNA, p-PI3K/PI3K ratio, p-AKT/AKT ratio, and PIK3R1 protein expression.
CONCLUSIONS
In HSGEC model of pSS, inhibition of miR-155-5p can promote cell proliferation and reduced cell apoptosis by targeting PI3K1 mRNA to negatively regulate the overexpression of PI3K/AKT signaling pathway.
Humans
;
MicroRNAs/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Sjogren's Syndrome/pathology*
;
Epithelial Cells/cytology*
;
Submandibular Gland/cytology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Apoptosis
;
Class Ia Phosphatidylinositol 3-Kinase
;
Cells, Cultured
5.Quercetin mitigates HIV-1 gp120-induced rat astrocyte neurotoxicity via promoting G3BP1 disassembly in stress granules.
Pengwei HUANG ; Jie CHEN ; Jinhu ZOU ; Xuefeng GAO ; Hong CAO
Journal of Southern Medical University 2025;45(2):304-312
OBJECTIVES:
To explore the effect of quercetin for mitigating HIV-1 gp120-induced astrocyte neurotoxicity and its underlying mechanism.
METHODS:
Primary rat astrocytes were isolated and treated with quercetin, HIV-1 gp120, or gradient concentrations of quercetin combined with HIV-1 gp120. The formation of stress granules (SGs) in the treated cells was observed with immunofluorescence assay, and the levels of oxidative stress markers and protein expressions were measured using specific assay kits and Western blotting. HIV-1 gp120 transgenic mice were treated with quercetin (50 mg/kg) by gavage for 4 weeks, and the changes in cognitive functions and oxidative stress levels were examined by behavioral assessments, oxidative stress index analysis in serum, and immunohistochemical and Western blotting of the brain tissue.
RESULTS:
In primary rat astrocytes, treatment with quercetin significantly reduced HIV-1 gp120-induced SG formation, increased the levels of antioxidant indexes, decreased the levels of oxidative substances, and up-regulated protein level associated with SG depolymerization. In the transgenic mouse models, quercetin obviously improved the cognitive function of the rats, reduced oxidative stress levels, and promoted the expression of proteins associate with SG depolymerization in the brain tissues.
CONCLUSIONS
Quercetin mitigates HIV-1 gp120-induced astrocyte neurotoxicity and cognitive function impairment by inhibiting oxidative stress, enhancing expressions of SG depolymerization-related proteins, and promoting SG disassembly, suggesting the value of quercetin as a potential therapeutic agent for neuroprotection in HIV-associated neurocognitive disorders.
Animals
;
Quercetin/pharmacology*
;
Astrocytes/metabolism*
;
HIV Envelope Protein gp120
;
Oxidative Stress/drug effects*
;
Rats
;
Stress Granules/drug effects*
;
Mice
;
Mice, Transgenic
;
Rats, Sprague-Dawley
;
Cells, Cultured
6.C6TSEDRVAJZ, a combination of small-molecule compounds, induces differentiation of human placental fibroblasts into epithelioid cells in vitro.
Zhenjia DAI ; Qunwei GAO ; Mengjiao YING ; Ao WANG ; Juan HONG ; Chunjing WANG ; Yu GUO ; Changqing LIU ; Gaofeng LIU
Journal of Southern Medical University 2025;45(2):322-330
OBJECTIVES:
To reprogram human placental fibroblasts (HPFs) into chemically induced epithelioid-like cells (ciEP-Ls) using a combination of small-molecule compounds.
METHODS:
HPFs cultured under normoxic conditions were identified using immunofluorescence assay, PCR and chromosomal karyotyping. Under hypoxic conditions (37 ℃, 5% O2), HPFs were cultured in a medium containing small-molecule compounds C6TSEDRVAJZ (CHIR99021, 616452, TTNPB, SAG, EPZ5676, DZNep, Ruxolitinib, VTP50469, Afuresertib, JNK-IN-8, and EZM0414), and the cell morphology was observed daily. The expression levels of epithelial cell markers in the induced cells were detected by immunofluorescence, Western blotting and PCR. Chromosomal karyotyping of the induced cells was performed and the induction efficiency was calculated.
RESULTS:
Before induction, HPFs showed positive expressions of fibroblast surface markers CD34 and vimentin and were negative for epithelial surface markers. PCR results showed high expressions of fibroblast-specific genes S100A4 and COL1A1 in HPFs with a normal human diploid karyotype. After one day of induction, the HPFs underwent morphological changes from a multinodular spindle shape to a round or polygonal shape, which was morphologically characteristic of ciEP-Ls. On day 4 of induction, the cells exhibited high expressions of the epithelial cell markers E-cadherin and Lin28A. RT-qPCR results also showed that the cells expressed the epithelial markers Smad3, GLi3, PAX8, WT1, KRT19, and KRT18 with significantly down-regulated expressions of all the fibroblast surface markers and a normal human diploid karyotype. The reprogramming efficiency of HPFs into ciEP-Ls ranged from (64.53±2.8)% to (68.10±3.6)%.
CONCLUSIONS
The small-molecule compound combination C6TSEDRVAJZ is capable of inducing HPFs into ciEP-Ls under hypoxic conditions with a high induction efficiency.
Humans
;
Fibroblasts/drug effects*
;
Pregnancy
;
Female
;
Cell Differentiation/drug effects*
;
Pyrimidines/pharmacology*
;
Placenta/cytology*
;
Cells, Cultured
;
Pyridines/pharmacology*
;
Pyrazoles/pharmacology*
;
Epithelial Cells/cytology*
7.LINC00837/miR-671-5p/SERPINE2 functional axis promotes pathological processes of fibroblast-like synovial cells in rheumatoid arthritis.
Zhoufang CAO ; Yuan WANG ; Mengna WANG ; Yue SUN ; Feifei LIU
Journal of Southern Medical University 2025;45(2):371-378
OBJECTIVES:
To investigate the regulatory effect of LINC00837/miR-671-5p/SERPINE2 functional axis on pathological processes of fibroblast-like synovial cells (FLS) in rheumatoid arthritis (RA).
METHODS:
RA-FLS were transfected with a LINC00837 overexpression plasmid (pcDNA3.1-LINC00837), a LINC00837 interference plasmid (siRNA-LINC00837), or their respective negative control plasmids (pcDNA3.1-NC and siRNA-NC). Dual luciferase was used to verify the targeting relationship between LINC00837 and miR-671-5p and between miR-671-5p and SERPINE2. RT-qPCR was used to detect the expression levels of LINC00837, miR-671-5p and SERPINE2 in normal FLS or the transfected cells, whose proliferation and migration abilities were assessed using Edu assay and scratch healing assay and by detecting the expression levels of Ki-67, PCNA, E-cadherin and N-cadherin with Western blotting. The changes in cellular secretion of the inflammatory cytokines (TNF‑α, IL-17, IL-4 and IL-10) were examined using ELISA.
RESULTS:
Dual luciferase reporter gene assay showed that LINC00837 was capable of binding to the 3'-UTR of miR-671-5p, and the latter bound to the 3-UTR of SERPINE2 at specific binding sites between them. Compared with normal FLS, RA-FLS showed significantly increased expressions of LINC00837 and SERPINE2, lowered miR-671-5p expression and enhanced proliferation and migration abilities with increased expressions of pro-inflammatory cytokines and reduced expressions of anti-inflammatory cytokines. Transfection of RA-FLS with pcDNA-LINC00837 further enhanced cell proliferation and migration and the changes in the inflammatory cytokines, while transfection with si-LINC00837 produced the opposite changes.
CONCLUSIONS
RA-FLS have a LINC00837/miR-671-5p/SERPINE2 functional axis, which regulates cell proliferation, migration and secretion of inflammatory factors, and interventions targeting LINC00837 may provide a potential strategy to regulate the pathological processes in RA-FLS.
Arthritis, Rheumatoid/metabolism*
;
MicroRNAs/metabolism*
;
Humans
;
Cell Proliferation
;
Cell Movement
;
Synovial Membrane/pathology*
;
RNA, Long Noncoding/genetics*
;
Fibroblasts/metabolism*
;
Synoviocytes/metabolism*
;
Cells, Cultured
;
Transfection
8.Didang Decoction-medicated serum enhances autophagy in high glucose-induced rat glomerular endothelial cells via the PI3K/Akt/mTOR signaling pathway.
Yanyan DONG ; Kejing ZHANG ; Jun CHU ; Quangen CHU
Journal of Southern Medical University 2025;45(3):461-469
OBJECTIVES:
To investigate the effect of Didang Decoction-medicated serum on autophagy in high glucose (HG)-induced rat glomerular endothelial cells (RGECs) and explore the pathway that mediates its effect.
METHODS:
Primary RGECs were isolated and cultured using sequential sieving combined with collagenase digestion, followed by identification using immunofluorescence assay for factor VIII. High glucose medium was used to induce RGECs to simulate a diabetic environment, and the effects of Didang Decoction-medicated serum and 3-MA (an autophagy inhibitor), either alone or in combination, on autophagy of HG-exposed cells were evaluated by observing autophagic vacuoles using monodansylcadaverine (MDC) staining. RT-qPCR and Western blotting were employed to measure mRNA and protein expression levels of Beclin-1, p62, LC3B, p-PI3K, p-Akt, and p-mTOR.
RESULTS:
Compared with the control cells, the HG-exposed RGECs showed significantly reduced autophagic fluorescence intensity, decreased Beclin-1 mRNA expression, increased p62 mRNA expression, downregulated Beclin-1 protein and LC3-II/I ratio, and upregulated p62, p-PI3K, p-Akt, and p-mTOR protein levels. Didang Decoction-medicated serum significantly enhanced autophagic fluorescence intensity in HG-exposed cells, increased Beclin-1 mRNA expression, decreased p62 mRNA expression, upregulated Beclin-1 protein, and downregulated p62, p-PI3K, p-Akt, and p-mTOR protein levels.
CONCLUSIONS
Didang Decoction-medicated serum enhances autophagy in HG-exposed RGECs by regulating the PI3K/Akt/mTOR signaling pathway, which sheds light on a new therapeutic strategy for diabetic nephropathy.
Animals
;
Autophagy/drug effects*
;
Signal Transduction/drug effects*
;
Rats
;
TOR Serine-Threonine Kinases/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Glucose
;
Cells, Cultured
;
Kidney Glomerulus/cytology*
;
Rats, Sprague-Dawley
9.Protein C activator derived from snake venom protects human umbilical vein endothelial cells against hypoxia-reoxygenation injury by suppressing ROS via upregulating HIF-1α and BNIP3.
Ming LIAO ; Wenhua ZHONG ; Ran ZHANG ; Juan LIANG ; Wentaorui XU ; Wenjun WAN ; Chao Li Shu WU ; 曙 李
Journal of Southern Medical University 2025;45(3):614-621
OBJECTIVES:
To investigate the antioxidative mechanism of snake venom-derived protein C activator (PCA) in mitigating vascular endothelial cell injury.
METHODS:
Human umbilical vein endothelial cells (HUVECs) were cultured in DMEM containing 1.0 g/L D-glucose and exposed to hypoxia (1% O2) for 6 h followed by reoxygenation for 2 h to establish a cell model of oxygen-glucose deprivation/reoxygenation (OGD/R). The cell model was treated with 2 μg/mL PCA alone or in combination with 2-ME2 (a HIF-1α inhibitor) or DMOG (a HIF-1α stabilizer), and intracellular production of reactive oxygen species (ROS) and protein expression levels of HIF-1α, BNIP3, and Beclin-1 were detected using DCFH-DA fluorescence probe, flow cytometry, and Western blotting. The OGD/R cell model was transfected with a BNIP3-specific siRNA or a scrambled control sequence prior to PCA treatment, and the changes in protein expressions of HIF-1α, BNIP3 and Beclin-1 and intracellular ROS production were examined.
RESULTS:
In the OGD/R cell model, PCA treatment significantly upregulated HIF-1α, BNIP3 and Beclin-1 expressions and reduced ROS production. The effects of PCA were obviously attenuated by co-treatment with 2-ME2 but augmented by treatment with DMOG (a HIF-1α stabilizer). In the cell model with BNIP3 knockdown, PCA treatment increased BNIP3 expression and decreased ROS production without causing significant changes in HIF-1α expression. Compared with HUVECs with PCA treatment only, the cells with BNIP3 knockdown prior to PCA treatment showed significantly lower Beclin-1 expression and higher ROS levels.
CONCLUSIONS
Snake venom PCA alleviates OGD/R-induced endothelial cell injury by upregulating HIF-1α/BNIP3 signaling to suppress ROS generation, suggesting its potential as a therapeutic agent against oxidative stress in vascular pathologies.
Humans
;
Reactive Oxygen Species/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Membrane Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Up-Regulation
;
Cell Hypoxia
;
Cells, Cultured
;
Snake Venoms/chemistry*
;
Beclin-1
10.C/EBPβ-Lin28a positive feedback loop triggered by C/EBPβ hypomethylation enhances the proliferation and migration of vascular smooth muscle cells in restenosis.
Xiaojun ZHOU ; Shan JIANG ; Siyi GUO ; Shuai YAO ; Qiqi SHENG ; Qian ZHANG ; Jianjun DONG ; Lin LIAO
Chinese Medical Journal 2025;138(4):419-429
BACKGROUND:
The main cause of restenosis after percutaneous transluminal angioplasty (PTA) is the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). Lin28a has been reported to play critical regulatory roles in this process. However, whether CCAAT/enhancer-binding proteins β (C/EBPβ) binds to the Lin28a promoter and drives the progression of restenosis has not been clarified. Therefore, in the present study, we aim to clarify the role of C/EBPβ-Lin28a axis in restenosis.
METHODS:
Restenosis and atherosclerosis rat models of type 2 diabetes ( n = 20, for each group) were established by subjecting to PTA. Subsequently, the difference in DNA methylation status and expression of C/EBPβ between the two groups were assessed. EdU, Transwell, and rescue assays were performed to assess the effect of C/EBPβ on the proliferation and migration of VSMCs. DNA methylation status was further assessed using Methyltarget sequencing. The interaction between Lin28a and ten-eleven translocation 1 (TET1) was analysed using co-immunoprecipitation (Co-IP) assay. Student's t -test and one-way analysis of variance were used for statistical analysis.
RESULTS:
C/EBPβ expression was upregulated and accompanied by hypomethylation of its promoter in restenosis when compared with atherosclerosis. In vitroC/EBPβ overexpression facilitated the proliferation and migration of VSMCs and was associated with increased Lin28a expression. Conversely, C/EBPβ knockdown resulted in the opposite effects. Chromatin immunoprecipitation assays further demonstrated that C/EBPβ could directly bind to Lin28a promoter. Increased C/EBPβ expression and enhanced proliferation and migration of VSMCs were observed after decitabine treatment. Further, mechanical stretch promoted C/EBPβ and Lin28a expression accompanied by C/EBPβ hypomethylation. Additionally, Lin28a overexpression reduced C/EBPβ methylation via recruiting TET1 and enhanced C/EBPβ-mediated proliferation and migration of VSMCs. The opposite was noted in Lin28a knockdown cells.
CONCLUSION
Our findings suggest that the C/EBPβ-Lin28a axis is a driver of restenosis progression, and presents a promising therapeutic target for restenosis.
Animals
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Muscle, Smooth, Vascular/metabolism*
;
Rats
;
DNA Methylation/physiology*
;
CCAAT-Enhancer-Binding Protein-beta/genetics*
;
Male
;
Myocytes, Smooth Muscle/cytology*
;
Rats, Sprague-Dawley
;
RNA-Binding Proteins/genetics*
;
Cells, Cultured
;
Coronary Restenosis/metabolism*

Result Analysis
Print
Save
E-mail