1.CAR-based cell therapies for systemic lupus erythematosus.
Yiyang WANG ; Liangjing LU ; Shuang YE ; Qiong FU
Chinese Medical Journal 2025;138(5):523-530
The remarkable efficacy of chimeric antigen receptor (CAR) T cell therapy in hematological malignancies has provided a solid basis for the therapeutic concept, wherein specific pathogenic cell populations can be eradicated by means of targeted recognition. During the past few years, CAR-based cell therapies have been extensively investigated in preclinical and clinical research across various non-tumor diseases, with particular emphasis in the treatment of autoimmune diseases (ADs), yielding significant advancements. The recent deployment of CD19-directed CAR T cells has induced long-lasting, drug-free remission in patients with systemic lupus erythematosus (SLE) and other systemic ADs, alongside a more profound immune reconstruction of B cell repertoire compared with conventional immunosuppressive agents and B cell-targeting biologics. Despite the initial success achieved by CAR T cell therapy, it is critical to acknowledge the divergences in its application between cancer and ADs. Through examining recent clinical studies and ongoing research, we highlight the transformative potential of this therapeutic approach in the treatment of SLE, while also addressing the challenges and future directions necessary to enhance the long-term efficacy and safety of CAR-based cell therapies in clinical practice.
Humans
;
Lupus Erythematosus, Systemic/immunology*
;
Receptors, Chimeric Antigen/metabolism*
;
Immunotherapy, Adoptive/methods*
;
Cell- and Tissue-Based Therapy/methods*
;
Animals
;
T-Lymphocytes/immunology*
2.Advances in gene and cellular therapeutic approaches for Huntington's disease.
Xuejiao PIAO ; Dan LI ; Hui LIU ; Qing GUO ; Yang YU
Protein & Cell 2025;16(5):307-337
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and nonpharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Huntington Disease/pathology*
;
Humans
;
Genetic Therapy/methods*
;
Animals
;
Huntingtin Protein/genetics*
;
Cell- and Tissue-Based Therapy/methods*
3.Cell therapy for end-stage liver disease: Current state and clinical challenge.
Lin ZHANG ; Yuntian DENG ; Xue BAI ; Xiao WEI ; Yushuang REN ; Shuang CHEN ; Hongxin DENG
Chinese Medical Journal 2024;137(23):2808-2820
Liver disease involves a complex interplay of pathological processes, including inflammation, hepatocyte necrosis, and fibrosis. End-stage liver disease (ESLD), such as liver failure and decompensated cirrhosis, has a high mortality rate, and liver transplantation is the only effective treatment. However, to overcome problems such as the shortage of donor livers and complications related to immunosuppression, there is an urgent need for new treatment strategies that need to be developed for patients with ESLD. For instance, hepatocytes derived from donor livers or stem cells can be engrafted and multiplied in the liver, substituting the host hepatocytes and rebuilding the liver parenchyma. Stem cell therapy, especially mesenchymal stem cell therapy, has been widely proved to restore liver function and alleviate liver injury in patients with severe liver disease, which has contributed to the clinical application of cell therapy. In this review, we discussed the types of cells used to treat ESLD and their therapeutic mechanisms. We also summarized the progress of clinical trials around the world and provided a perspective on cell therapy.
Humans
;
Cell- and Tissue-Based Therapy/methods*
;
End Stage Liver Disease/therapy*
;
Hepatocytes
;
Mesenchymal Stem Cell Transplantation
;
Stem Cell Transplantation
5.Clinical development of chimeric antigen receptor-T cell therapy for hematological malignancies.
Chinese Medical Journal 2023;136(19):2285-2296
Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development. Chimeric antigen receptor (CAR)-T cell therapy is the most widely applied cellular therapy. Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017, five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies. Moreover, clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing. Both China and the United States have contributed significantly to the development of clinical trials. However, CAR-T cell therapy has many limitations such as a high relapse rate, adverse side effects, and restricted availability. Various methods are being implemented in clinical trials to address these issues, some of which have demonstrated promising breakthroughs. This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.
Humans
;
Receptors, Chimeric Antigen
;
Receptors, Antigen, T-Cell/genetics*
;
Immunotherapy, Adoptive/adverse effects*
;
Hematologic Neoplasms/therapy*
;
Multiple Myeloma/etiology*
;
Cell- and Tissue-Based Therapy
6.Progress in Research and Application of CAR-T Cell Therapy in T-Lymphocyte Tumors --Review.
Journal of Experimental Hematology 2023;31(6):1894-1898
T-lymphocyte tumors are a group of diseases containing various types of lymphatic system tumors, with strong heterogeneity and poor clinical outcomes. Chimeric antigen receptor T (CAR-T) cell therapy, as a new immune cell therapy, has made a breakthrough in the field of B-lymphocyte tumors. People are interested in the application prospect of this technique in the field of T-lymphocyte tumors. Some studies have shown that CAR-T cell therapy has made some progress in the treatment of T-lymphocyte tumors, and CAR-T for some targets has entered the stage of clinical trials. However, due to the characteristics of T cells, there are also many challenges. This article reviews the research and application of CAR-T cell therapy in T-lymphocyte tumors.
Humans
;
T-Lymphocytes
;
Receptors, Chimeric Antigen/metabolism*
;
Neoplasms/metabolism*
;
Immunotherapy, Adoptive/methods*
;
Cell- and Tissue-Based Therapy
7.Alteration and significance of serum lipid levels and nutritional status during BCMA-CAR-T-cell therapy in patients with refractory or relapsed multiple myeloma: a retrospective study based on LEGEND-2.
Xue Zhu XU ; Rui LIU ; Wan Hong ZHAO ; Yun YANG ; Jie LIU ; Yu Gang ZHANG ; Ju BAI ; Ai Li HE
Chinese Journal of Hematology 2023;44(10):838-844
Objective: To explore the dynamic changes in serum lipid levels and nutritional status during BCMA-CAR-T-cell therapy in patients with refractory or relapsed multiple myeloma (R/R MM) based on LEGEND-2. Methods: The data of patients with R/R MM who underwent BCMA-CAR-T therapy at our hospital between March 30, 2016, and February 6, 2018, were retrospectively collected. Serum lipid levels, controlled nutritional status (CONUT) score, and other clinical indicators at different time points before and after CAR-T-cell infusion were compared and analyzed. The best cut-off value was determined by using the receiver operator characteristic (ROC) curve. The patients were divided into high-CONUT score (>6.5 points, malnutrition group) and low-CONUT score groups (≤6.5 points, good nutrition group), comparing the progression-free survival (PFS) and total survival (OS) of the two groups using Kaplan-Meier survival analysis. Results: Before the infusion of CAR-T-cells, excluding triglycerides (TG), patients' serum lipid levels were lower than normal on average. At 8-14 d after CAR-T-cell infusion, serum albumin (ALB), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and apolipoprotein A1 (Apo A1) levels dropped to the minimum, whereas CONUT scores reached the maximum. In addition to TG, apolipoprotein B (Apo B) levels increased compared with baseline. After CAR-T-cell therapy, the patients' serum lipid levels significantly increased with well-improved nutritional status. Spearman's related analysis showed that TC, HDL, and ApoA1 levels after CAR-T-cell injection were significantly negatively correlated with the grade of cytokine-release syndrome (CRS) (r=-0.548, P=0.003; r=-0.444, P=0.020; r=-0.589, P=0.001). Furthermore, survival analysis indicated that the CONUT score was unrelated to PFS, and the median OS of patients with R/R MM in the high-CONUT score group was shorter than that in the low-CONUT score group (P=0.046) . Conclusions: During CAR-T-cell therapy, hypolipidemia and poor nutritional status were aggravated, which is possibly related to CRS. The patients' serum lipid levels and nutritional status were significantly improved after CAR-T-cell treatment. The CONUT score affected the median OS in patients treated with CAR-T-cells. Therefore, specific screening and intervention for nutritional status in patients receiving CAR-T-cell therapy are required.
Humans
;
Multiple Myeloma/drug therapy*
;
Nutritional Status
;
Retrospective Studies
;
Receptors, Chimeric Antigen/therapeutic use*
;
B-Cell Maturation Antigen/therapeutic use*
;
Cell- and Tissue-Based Therapy
;
Lipids/therapeutic use*
9.Improved outcomes in E2A::HLF positive B-cell acute lymphoblastic leukemia by chimeric antigen receptor T cell therapy and BCL-2 inhibitor.
Shumin CHEN ; Ye LI ; Zheng WANG ; Lin FENG ; Yueping JIA ; Xiaodong MO ; Yu WANG ; Qian JIANG ; Xiaojun HUANG ; Yueyun LAI
Chinese Medical Journal 2023;136(11):1382-1384

Result Analysis
Print
Save
E-mail