1.Research Progress of Long Non-Coding RNA in Hematological Tumors --Review.
Feng LI ; Fei-Fei YANG ; Yan-Li XU
Journal of Experimental Hematology 2023;31(1):306-310
Long non-coding RNA (lncRNA) is a hot topic in the field of researching tumor pathogenesis, and the importance in hematologic malignancies has been gradually being elucidated. LncRNA not only regulates hematological tumorigenesis and progression through affecting various biological processes such as cell proliferation, differentiation, pluripotency and apoptosis; moreover, abnormal expression and mutation of lncRNA are closely related to drug resistance and prognosis. Thus lncRNA can be used as novel biomarker and potential therapeutic target for hematological tumors. In this review, we will focus on the latest progress of lncRNA in hematological tumors to provide new ideas for the clinical diagnosis, prognostic evaluation together with research and development of target drugs for hematologic malignancies.
Humans
;
RNA, Long Noncoding/metabolism*
;
Hematologic Neoplasms/genetics*
;
Neoplasms
;
Carcinogenesis/pathology*
;
Cell Transformation, Neoplastic/genetics*
;
Gene Expression Regulation, Neoplastic
2.Genetic variation of YWHAE gene-"Switch" of disease control.
Xi JIN ; Minhui DAI ; Yanhong ZHOU
Journal of Central South University(Medical Sciences) 2022;47(1):101-108
YWHAE gene is located on chromosome 17p13.3, and its product 14-3-3epsilon protein belongs to 14-3-3 protein family. As a molecular scaffold, YWHAE participates in biological processes such as cell adhesion, cell cycle regulation, signal transduction and malignant transformation, and is closely related to many diseases. Overexpression of YWHAE in breast cancer can increase the ability of proliferation, migration and invasion of breast cancer cells. In gastric cancer, YWHAE acts as a negative regulator of MYC and CDC25B, which reduces their expression and inhibits the proliferation, migration, and invasion of gastric cancer cells, and enhances YWHAE-mediated transactivation of NF-κB through CagA. In colorectal cancer, YWHAE lncRNA, as a sponge molecule of miR-323a-3p and miR-532-5p, can compete for endogenous RNA through direct interaction with miR-323a-3p and miR-532-5p, thus up-regulating K-RAS/ERK/1/2 and PI3K-AKT signaling pathways and promoting the cell cycle progression of the colorectal cancer. YWHAE not only mediates tumorigenesis as a competitive endogenous RNA, but also affects gene expression through chromosome variation. For example, the FAM22B-YWHAE fusion gene caused by t(10; 17) (q22; p13) may be associated with the development of endometrial stromal sarcoma. At the same time, the fusion transcript of YWHAE and NUTM2B/E may also lead to the occurrence of endometrial stromal sarcoma. To understand the relationship between YWHAE, NUTM2A, and NUTM2B gene rearrangement/fusion and malignant tumor, YWHAE-FAM22 fusion gene/translocation and tumor, YWHAE gene polymorphism and mental illness, as well as the relationship between 17p13.3 region change and disease occurrence. It provides new idea and basis for understanding the effect of YWHAE gene molecular mechanism and genetic variation on the disease progression, and for the targeted for the diseases.
14-3-3 Proteins/metabolism*
;
Breast Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Transformation, Neoplastic/genetics*
;
Colorectal Neoplasms/genetics*
;
Endometrial Neoplasms
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Sarcoma, Endometrial Stromal/pathology*
;
Stomach Neoplasms/genetics*
;
Transcription Factors/genetics*
;
Translocation, Genetic
4.Clinicopathologic characteristics of primary vaginal clear cell carcinoma in China and an endometriosis malignant transformation case: a case series.
Sikai CHEN ; Zhiyue GU ; Jian SUN ; Boju PAN ; Qingbo FAN ; Ping ZHENG ; Shu WANG ; Jinhua LENG ; Yang XIANG ; Jinghe LANG
Chinese Medical Journal 2022;135(6):738-740
5.Cancer cells corrupt normal epithelial cells through miR-let-7c-rich small extracellular vesicle-mediated downregulation of p53/PTEN.
Weilian LIANG ; Yang CHEN ; Hanzhe LIU ; Hui ZHAO ; Tingting LUO ; Hokeung TANG ; Xiaocheng ZHOU ; Erhui JIANG ; Zhe SHAO ; Ke LIU ; Zhengjun SHANG
International Journal of Oral Science 2022;14(1):36-36
Tumor volume increases continuously in the advanced stage, and aside from the self-renewal of tumor cells, whether the oncogenic transformation of surrounding normal cells is involved in this process is currently unclear. Here, we show that oral squamous cell carcinoma (OSCC)-derived small extracellular vesicles (sEVs) promote the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of normal epithelial cells but delay their apoptosis. In addition, nuclear-cytoplasmic invaginations and multiple nucleoli are observed in sEV-treated normal cells, both of which are typical characteristics of premalignant lesions of OSCC. Mechanistically, miR-let-7c in OSCC-derived sEVs is transferred to normal epithelial cells, leading to the transcriptional inhibition of p53 and inactivation of the p53/PTEN pathway. In summary, we demonstrate that OSCC-derived sEVs promote the precancerous transformation of normal epithelial cells, in which the miR-let-7c/p53/PTEN pathway plays an important role. Our findings reveal that cancer cells can corrupt normal epithelial cells through sEVs, which provides new insight into the progression of OSCC.
Carcinoma, Squamous Cell/pathology*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Cell Transformation, Neoplastic
;
Down-Regulation
;
Epithelial Cells/metabolism*
;
Extracellular Vesicles/pathology*
;
Humans
;
MicroRNAs/metabolism*
;
Mouth Neoplasms/pathology*
;
PTEN Phosphohydrolase/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
6.Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation.
Mohit SHARMA ; Felipe Paiva FONSECA ; Keith D HUNTER ; Raghu RADHAKRISHNAN
International Journal of Oral Science 2020;12(1):23-23
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Animals
;
Carcinoma, Squamous Cell
;
pathology
;
Cell Transformation, Neoplastic
;
pathology
;
Mice
;
Mouth Mucosa
;
Mouth Neoplasms
;
pathology
;
Oral Submucous Fibrosis
;
pathology
;
Stem Cells
7.Interferon-γ regulates cell malignant growth via the c-Abl/HDAC2 signaling pathway in mammary epithelial cells.
Wen-Bo REN ; Xiao-Jing XIA ; Jing HUANG ; Wen-Fei GUO ; Yan-Yi CHE ; Ting-Hao HUANG ; Lian-Cheng LEI
Journal of Zhejiang University. Science. B 2019;20(1):39-48
Interferon-γ (IFN-γ) has been used to control cancers in clinical treatment. However, an increasing number of reports have suggested that in some cases effectiveness declines after a long treatment period, the reason being unclear. We have reported previously that long-term IFN-γ treatment induces malignant transformation of healthy lactating bovine mammary epithelial cells (BMECs) in vitro. In this study, we investigated the mechanisms underlying the malignant proliferation of BMECs under IFN-γ treatment. The primary BMECs used in this study were stimulated by IFN-γ (10 ng/mL) for a long term to promote malignancy. We observed that IFN-γ could promote malignant cell proliferation, increase the expression of cyclin D1/cyclin-dependent kinase 4 (CDK4), decrease the expression of p21, and upregulate the expression of cellular-abelsongene (c-Abl) and histone deacetylase 2 (HDAC2). The HDAC2 inhibitor, valproate (VPA) and the c-Abl inhibitor, imatinib, lowered the expression level of cyclin D1/CDK4, and increased the expression level of p21, leading to an inhibitory effect on IFN-γ-induced malignant cell growth. When c-Abl was downregulated, the HDAC2 level was also decreased by promoted proteasome degradation. These data suggest that IFN-γ promotes the growth of malignant BMECs through the c-Abl/HDAC2 signaling pathway. Our findings suggest that long-term application of IFN-γ may be closely associated with the promotion of cell growth and even the carcinogenesis of breast cancer.
Animals
;
Carcinogenesis/pathology*
;
Cattle
;
Cell Cycle Proteins/metabolism*
;
Cell Proliferation/drug effects*
;
Cell Transformation, Neoplastic/pathology*
;
Cells, Cultured
;
Epithelial Cells/pathology*
;
Female
;
Histone Deacetylase 2/metabolism*
;
Imatinib Mesylate/pharmacology*
;
Interferon-gamma/pharmacology*
;
Mammary Glands, Animal/pathology*
;
Mammary Neoplasms, Experimental/pathology*
;
Proto-Oncogene Proteins c-abl/metabolism*
;
Signal Transduction
;
Valproic Acid/pharmacology*
9.Research Advances in CKLFSF-like MARVEL Transmembrane Domain Containing Member 3.
Feng-zhan HU ; Zheng-zuo SHENG ; Cai-peng QIN ; Tao XU
Acta Academiae Medicinae Sinicae 2016;38(3):360-363
CKLF-like MARVEL transmembrane domain containing member/chemokine-like factor super family member (CKLFSF/CMTM) is a novel tumor suppressor gene. CMTM3 is broadly expressed in normal human tissues and evolutionary conserved,especially in testis,spleen,and some cells of peripheral blood mononuclear cells. However,its expression is undetectable or down-regulated in most carcinoma cell lines and tissues. Restoration of CMTM3 may inhibit the proliferation,migration,and invasion of carcinoma cells. Although the exact mechanism of its anti-tumor activity remains unclear,CKLFSF3/CMTM3 is closely connected with immune system and associated with sex during tumorigenesis. The study advances of CKLFSF3/CMTM3 are elaborated in this review as CMTM3 may be a new target in the gene therapies for tumors,especially genitourinary tumors,while further studies on CMTM3 and its anti-tumor mechanisms are warranted.
Cell Transformation, Neoplastic
;
Chemokines
;
genetics
;
physiology
;
Down-Regulation
;
Humans
;
Leukocytes, Mononuclear
;
MARVEL Domain-Containing Proteins
;
genetics
;
physiology
;
Male
;
Neoplasms
;
pathology
10.Effects of miR-125a-5p on Cell Proliferation,Apoptosis and Cell Cycle of Pancreatic Cancer Cells.
Cong-Wei JIA ; Yang SUN ; Ting-Ting ZHANG ; Zhao-Hui LU ; Jie CHEN
Acta Academiae Medicinae Sinicae 2016;38(4):415-421
Objective To investigate the effects of miR-125a-5p on cell proliferation,apoptosis and cell cycle of pancreatic cancer cells.Methods The expression level of miR-125a-5p in pancreatic cancer was determined using quantitative real-time polymerase chain reaction analysis in 4 pairs of pancreatic cancer tissues and matched adjacent normal tissues samples. The expression of miR-125a-5p was downregulated in pancreatic cancer cell lines by transfection with miR-125a-5p inhibitor. Cell counting kit-8 assays was conducted to detect the growth ability of pancreatic cancer cell lines. Flow cytometry was applied to detect the cell cycle and apopotosis. Soft agar colony formation test was employed to assess the role of miR-125a-5p in process of malignant transformation.Results MiR-125a-5p was significantly highly expressed in pancreatic ductal adenocarcinoma tissues than adjacent normal tissues(P<0.05). After the expression level of miR-125a-5p in Panc-1 and MIA PaCa-2 was downregulated,the growth ability was suppressed(P<0.05),early apopotosis rate was promoted by 13.6% and 11.0% respectively(P<0.05),the amount of colony formation was reduced by 27.3% and 27.8%,respectively(P<0.05),and the percentage of S stage of Panc-1 was reduced by 11.8% (P<0.05).Conclusions The expression of miR-125a-5p is high in pancreatic ductal adenocarcinoma tissues. After the expression level of miR-125a-5p is downregulated,the growth ability,colony formation,and cell cycle of Panc-1 and MIA PaCa-2 are suppressed,and the early apopotosis rate will be promoted. Therefore,miR-125a-5p may play an oncogenic role in pancreatic ductal adenocarcinoma.
Apoptosis
;
Carcinoma, Pancreatic Ductal
;
pathology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Transformation, Neoplastic
;
Down-Regulation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Pancreatic Neoplasms
;
pathology

Result Analysis
Print
Save
E-mail