1.Integrins in human hepatocellular carcinoma tumorigenesis and therapy.
Qiong GAO ; Zhaolin SUN ; Deyu FANG
Chinese Medical Journal 2023;136(3):253-268
		                        		
		                        			
		                        			Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Integrins/metabolism*
		                        			;
		                        		
		                        			Carcinoma, Hepatocellular/genetics*
		                        			;
		                        		
		                        			Liver Neoplasms/genetics*
		                        			;
		                        		
		                        			Cell Adhesion
		                        			;
		                        		
		                        			Carcinogenesis
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic
		                        			;
		                        		
		                        			Tumor Microenvironment
		                        			
		                        		
		                        	
2.Research Progress of Long Non-Coding RNA in Hematological Tumors --Review.
Feng LI ; Fei-Fei YANG ; Yan-Li XU
Journal of Experimental Hematology 2023;31(1):306-310
		                        		
		                        			
		                        			Long non-coding RNA (lncRNA) is a hot topic in the field of researching tumor pathogenesis, and the importance in hematologic malignancies has been gradually being elucidated. LncRNA not only regulates hematological tumorigenesis and progression through affecting various biological processes such as cell proliferation, differentiation, pluripotency and apoptosis; moreover, abnormal expression and mutation of lncRNA are closely related to drug resistance and prognosis. Thus lncRNA can be used as novel biomarker and potential therapeutic target for hematological tumors. In this review, we will focus on the latest progress of lncRNA in hematological tumors to provide new ideas for the clinical diagnosis, prognostic evaluation together with research and development of target drugs for hematologic malignancies.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			RNA, Long Noncoding/metabolism*
		                        			;
		                        		
		                        			Hematologic Neoplasms/genetics*
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			Carcinogenesis/pathology*
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic/genetics*
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			
		                        		
		                        	
3.Genetic variation of YWHAE gene-"Switch" of disease control.
Xi JIN ; Minhui DAI ; Yanhong ZHOU
Journal of Central South University(Medical Sciences) 2022;47(1):101-108
		                        		
		                        			
		                        			YWHAE gene is located on chromosome 17p13.3, and its product 14-3-3epsilon protein belongs to 14-3-3 protein family. As a molecular scaffold, YWHAE participates in biological processes such as cell adhesion, cell cycle regulation, signal transduction and malignant transformation, and is closely related to many diseases. Overexpression of YWHAE in breast cancer can increase the ability of proliferation, migration and invasion of breast cancer cells. In gastric cancer, YWHAE acts as a negative regulator of MYC and CDC25B, which reduces their expression and inhibits the proliferation, migration, and invasion of gastric cancer cells, and enhances YWHAE-mediated transactivation of NF-κB through CagA. In colorectal cancer, YWHAE lncRNA, as a sponge molecule of miR-323a-3p and miR-532-5p, can compete for endogenous RNA through direct interaction with miR-323a-3p and miR-532-5p, thus up-regulating K-RAS/ERK/1/2 and PI3K-AKT signaling pathways and promoting the cell cycle progression of the colorectal cancer. YWHAE not only mediates tumorigenesis as a competitive endogenous RNA, but also affects gene expression through chromosome variation. For example, the FAM22B-YWHAE fusion gene caused by t(10; 17) (q22; p13) may be associated with the development of endometrial stromal sarcoma. At the same time, the fusion transcript of YWHAE and NUTM2B/E may also lead to the occurrence of endometrial stromal sarcoma. To understand the relationship between YWHAE, NUTM2A, and NUTM2B gene rearrangement/fusion and malignant tumor, YWHAE-FAM22 fusion gene/translocation and tumor, YWHAE gene polymorphism and mental illness, as well as the relationship between 17p13.3 region change and disease occurrence. It provides new idea and basis for understanding the effect of YWHAE gene molecular mechanism and genetic variation on the disease progression, and for the targeted for the diseases.
		                        		
		                        		
		                        		
		                        			14-3-3 Proteins/metabolism*
		                        			;
		                        		
		                        			Breast Neoplasms/genetics*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/genetics*
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic/genetics*
		                        			;
		                        		
		                        			Colorectal Neoplasms/genetics*
		                        			;
		                        		
		                        			Endometrial Neoplasms
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs/genetics*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Sarcoma, Endometrial Stromal/pathology*
		                        			;
		                        		
		                        			Stomach Neoplasms/genetics*
		                        			;
		                        		
		                        			Transcription Factors/genetics*
		                        			;
		                        		
		                        			Translocation, Genetic
		                        			
		                        		
		                        	
4.Inhibition of the Hedgehog Signaling Pathway Depresses the Cigarette Smoke-Induced Malignant Transformation of 16HBE Cells on a Microfluidic Chip.
Yong-Xin QIN ; Zhi-Hui YANG ; Xiao-Hui DU ; Hui ZHAO ; Yuan-Bin LIU ; Zhe GUO ; Qi WANG
Chinese Medical Journal 2018;131(10):1191-1198
BackgroundThe hedgehog signaling system (HHS) plays an important role in the regulation of cell proliferation and differentiation during the embryonic phases. However, little is known about the involvement of HHS in the malignant transformation of cells. This study aimed to detect the role of HHS in the malignant transformation of human bronchial epithelial (16HBE) cells.
MethodsIn this study, two microfluidic chips were designed to investigate cigarette smoke extract (CSE)-induced malignant transformation of cells. Chip A contained a concentration gradient generator, while chip B had four cell chambers with a central channel. The 16HBE cells cultured in chip A were used to determine the optimal concentration of CSE for inducing malignant transformation. The 16HBE cells in chip B were cultured with 12.25% CSE (Group A), 12.25% CSE + 5 μmol/L cyclopamine (Group B), or normal complete medium as control for 8 months (Group C), to establish the in vitro lung inflammatory-cancer transformation model. The transformed cells were inoculated into 20 nude mice as cells alone (Group 1) or cells with cyclopamine (Group 2) for tumorigenesis testing. Expression of HHS proteins was detected by Western blot. Data were expressed as mean ± standard deviation. The t-test was used for paired samples, and the difference among groups was analyzed using a one-way analysis of variance.
ResultsThe optimal concentration of CSE was 12.25%. Expression of HHS proteins increased during the process of malignant transformation (Group B vs. Group A, F = 7.65, P < 0.05). After CSE exposure for 8 months, there were significant changes in cellular morphology, which allowed the transformed cells to grow into tumors in 40 days after being inoculated into nude mice. Cyclopamine could effectively depress the expression of HHS proteins (Group C vs. Group B, F = 6.47, P < 0.05) and prevent tumor growth in nude mice (Group 2 vs. Group 1, t = 31.59, P < 0.01).
ConclusionsThe activity of HHS is upregulated during the CSE-induced malignant transformation of 16HBE cells. Cyclopamine can effectively depress expression of HHS proteins in vitro and prevent tumor growth of the transformed cells in vivo.
Animals ; Cell Transformation, Neoplastic ; genetics ; metabolism ; Gene Expression Regulation, Neoplastic ; genetics ; physiology ; Hedgehog Proteins ; genetics ; metabolism ; Lab-On-A-Chip Devices ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Microfluidics ; Signal Transduction ; genetics ; physiology ; Smoke ; Smoking ; adverse effects
5.Effects of miR-125a-5p on Cell Proliferation,Apoptosis and Cell Cycle of Pancreatic Cancer Cells.
Cong-Wei JIA ; Yang SUN ; Ting-Ting ZHANG ; Zhao-Hui LU ; Jie CHEN
Acta Academiae Medicinae Sinicae 2016;38(4):415-421
		                        		
		                        			
		                        			Objective To investigate the effects of miR-125a-5p on cell proliferation,apoptosis and cell cycle of pancreatic cancer cells.Methods The expression level of miR-125a-5p in pancreatic cancer was determined using quantitative real-time polymerase chain reaction analysis in 4 pairs of pancreatic cancer tissues and matched adjacent normal tissues samples. The expression of miR-125a-5p was downregulated in pancreatic cancer cell lines by transfection with miR-125a-5p inhibitor. Cell counting kit-8 assays was conducted to detect the growth ability of pancreatic cancer cell lines. Flow cytometry was applied to detect the cell cycle and apopotosis. Soft agar colony formation test was employed to assess the role of miR-125a-5p in process of malignant transformation.Results MiR-125a-5p was significantly highly expressed in pancreatic ductal adenocarcinoma tissues than adjacent normal tissues(P<0.05). After the expression level of miR-125a-5p in Panc-1 and MIA PaCa-2 was downregulated,the growth ability was suppressed(P<0.05),early apopotosis rate was promoted by 13.6% and 11.0% respectively(P<0.05),the amount of colony formation was reduced by 27.3% and 27.8%,respectively(P<0.05),and the percentage of S stage of Panc-1 was reduced by 11.8% (P<0.05).Conclusions The expression of miR-125a-5p is high in pancreatic ductal adenocarcinoma tissues. After the expression level of miR-125a-5p is downregulated,the growth ability,colony formation,and cell cycle of Panc-1 and MIA PaCa-2 are suppressed,and the early apopotosis rate will be promoted. Therefore,miR-125a-5p may play an oncogenic role in pancreatic ductal adenocarcinoma.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Carcinoma, Pancreatic Ductal
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Cell Cycle
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pancreatic Neoplasms
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
6.Expression of YY 1 protein in human insulinoma and its clinical implication.
Wen-Xia LI ; Ye-En HUANG ; Xiao-Xin SHI ; Pei-Xin LIN ; Zhen-Ning ZHOU ; Yao-Zhong ZHANG ; Hong SHEN
Journal of Southern Medical University 2016;36(3):361-364
OBJECTIVETo investigate the expression of Yin Yang 1 (YY1) protein in human insulinoma and explore its clinical significance.
METHODSNineteen pancreatic neuroendocrine tumor tissue were collected from patients treated in Nanfang Hospital between 2000 and 2014. The protein expression of YY1 in benign and malignant insulinoma tissues were detected by immunohistochemistry.
RESULTSPositive expression for YY1 protein was detected in both benign and malignant tumor tissues, but the malignant tissues had a significantly greater intensity of YY1 expression than the benign tissues (P=0.042). The intensity of YY1 expression was positively correlated with the nature of the tumor, and the insulinomas with high expressions of YY1 had significantly greater malignant potentials (P=0.037).
CONCLUSIONThe high expression of YY1 protein is associated with the development of insulinima. YY1 may serve as a new tumor marker for detecting the malignant transformation of insulinoma.
Biomarkers, Tumor ; metabolism ; Cell Transformation, Neoplastic ; Humans ; Immunohistochemistry ; Insulinoma ; genetics ; metabolism ; Pancreatic Neoplasms ; genetics ; metabolism ; YY1 Transcription Factor ; genetics ; metabolism
7.Correlation of Twist and YB-1 up-regulation and epithelial-mesenchymal transition during tumorigenesis and progression of cervical carcinoma.
Min LI ; Hong GUAN ; Xinrong HU ; E-mail: 10028303731@QQ.COM. ; Ying WANG ; Qian WEI ; Qingfeng YANG
Chinese Journal of Pathology 2015;44(8):594-599
OBJECTIVETo investigate the clinicopathological significance of Twist and YB-1 up-regulation in cervical cancer, and to correlate the expression of the two genes with E-cadherin, a marker of epithelial-mesenchymal transition (EMT).
METHODSA total of 202 tissue samples were collected during January 2008 to December 2013, including 50 cases of normal cervical tissues, 100 cases of cervical intraepithelial neoplasia (CIN) and 52 cases of squamous cell carcinoma (SCC). Twist, YB-1 and E-cadherin expression was investigated by MaxVision.
RESULTSIncreased expression levels of Twist and YB-1 were found and correlated with the malignant transformation of cervical epithelium, histological progression and metastasis of cervical cancer. In addition, Twist and YB-1 overexpression was also associated with aberrant expression of E-cadherin. Regression analysis revealed that Twist expression was an independent factor for the histological progression of cervical cancer.
CONCLUSIONSIt is suggested that Twist and YB-1 overexpression is significantly linked to cervical cancer tumorigenesis and progression, likely related to EMT through (YB-1)-Twist-(E-cadherin) pathway. Twist and YB-1 may be markers for determining the metastatic potential of cervical cancer.
Biomarkers, Tumor ; genetics ; metabolism ; Cadherins ; genetics ; metabolism ; Carcinoma, Squamous Cell ; metabolism ; pathology ; Cell Transformation, Neoplastic ; Cervical Intraepithelial Neoplasia ; metabolism ; pathology ; Disease Progression ; Epithelial-Mesenchymal Transition ; Epithelium ; pathology ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Nuclear Proteins ; genetics ; metabolism ; Twist-Related Protein 1 ; genetics ; metabolism ; Up-Regulation ; Uterine Cervical Neoplasms ; metabolism ; pathology ; Y-Box-Binding Protein 1 ; genetics ; metabolism
8.Activation of KRAS promotes the mesenchymal features of basal-type breast cancer.
Rae Kwon KIM ; Yongjoon SUH ; Ki Chun YOO ; Yan Hong CUI ; Hyeonmi KIM ; Min Jung KIM ; In Gyu KIM ; Su Jae LEE
Experimental & Molecular Medicine 2015;47(1):e137-
		                        		
		                        			
		                        			Basal-type breast cancers are among the most aggressive and deadly breast cancer subtypes, displaying a high metastatic ability associated with mesenchymal features. However, the molecular mechanisms underlying the maintenance of mesenchymal phenotypes of basal-type breast cancer cells remain obscure. Here, we report that KRAS is a critical regulator for the maintenance of mesenchymal features in basal-type breast cancer cells. KRAS is preferentially activated in basal-type breast cancer cells as compared with luminal type. By loss and gain of KRAS, we found that KRAS is necessary and sufficient for the maintenance of mesenchymal phenotypes and metastatic ability through SLUG expression. Taken together, this study demonstrates that KRAS is a critical regulator for the metastatic behavior associated with mesenchymal features of breast cancer cells, implicating a novel therapeutic target for basal-type breast cancer.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Breast Neoplasms/*genetics/metabolism/pathology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic/genetics/metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition/*genetics
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Heterografts
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasm Invasiveness
		                        			;
		                        		
		                        			Neoplasm Metastasis
		                        			;
		                        		
		                        			Phenotype
		                        			;
		                        		
		                        			Proto-Oncogene Proteins/*genetics/metabolism
		                        			;
		                        		
		                        			*Transcriptional Activation
		                        			;
		                        		
		                        			ras Proteins/*genetics/metabolism
		                        			
		                        		
		                        	
9.Decreased expression of Toll-like receptor 4 and 5 during progression of prostate transformation in transgenic adenocarcinoma of mouse prostate mice.
Ju Hee HAN ; Jong Hwan PARK ; Bo Yeon KIM ; Seo Na CHANG ; Tae Hyoun KIM ; Jae Hak PARK ; Dong Jae KIM
Journal of Veterinary Science 2015;16(3):281-287
		                        		
		                        			
		                        			Chronic inflammation has been considered an important risk factor for development of prostate cancer. Toll-like receptors (TLRs) recognize microbial moieties or endogenous molecules and play an important role in the triggering and promotion of inflammation. In this study, we examined whether expression of TLR4 and TLR5 was associated with progression of prostate transformation in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The expression of TLR4 and TLR5 was evaluated by immunohistochemisty in formalin-fixed paraffin-embedded prostate tissue from wild-type (WT) and TRAMP mice. Normal prostate tissue from WT mice showed strong expression of TLR4 and TLR5. However, TLR4 expression in the prostate tissue from TRAMP mice gradually decreased as pathologic grade became more aggressive. TLR5 expression in the prostate tissue from TRAMP mice also decreased in low-grade prostate intraepithelial neoplasia (PIN), high-grade PIN and poorly differentiated adenocarcinoma. Overall, our results suggest that decreased expression of TLR4 and TLR5 may contribute to prostate tumorigenesis.
		                        		
		                        		
		                        		
		                        			Adenocarcinoma/etiology/*genetics
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic
		                        			;
		                        		
		                        			Disease Progression
		                        			;
		                        		
		                        			*Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			Prostatic Neoplasms/etiology/*genetics
		                        			;
		                        		
		                        			Toll-Like Receptor 4/*genetics/metabolism
		                        			;
		                        		
		                        			Toll-Like Receptor 5/*genetics/metabolism
		                        			
		                        		
		                        	
10.The potential role of COX-2 in cancer stem cell-mediated canine mammary tumor initiation: an immunohistochemical study.
Jian HUANG ; Di ZHANG ; Fuqiang XIE ; Degui LIN
Journal of Veterinary Science 2015;16(2):225-231
		                        		
		                        			
		                        			Increasing evidence suggests that cancer stem cells (CSCs) are responsible for tumor initiation and maintenance. Additionally, it is becoming apparent that cyclooxygenase (COX) signaling is associated with canine mammary tumor development. The goals of the present study were to investigate COX-2 expression patterns and their effect on CSC-mediated tumor initiation in primary canine mammary tissues and tumorsphere models using immunohistochemistry. Patterns of COX-2, CD44, octamer-binding transcription factor (Oct)-3/4, and epidermal growth factor receptor (EGFR) expression were examined in malignant mammary tumor (MMT) samples and analyzed in terms of clinicopathological characteristics. COX-2 and Oct-3/4 expression was higher in MMTs compared to other histological samples with heterogeneous patterns. In MMTs, COX-2 expression correlated with tumor malignancy features. Significant associations between COX-2, CD44, and EGFR were observed in low-differentiated MMTs. Comparative analysis showed that the levels of COX-2, CD44, and Oct-3/4 expression varied significantly among TSs of three histological grades. Enhanced COX-2 staining was consistently observed in TSs. Similar levels of staining intensity were found for CD44 and Oct-3/4, but EGFR expression was weak. Our findings indicate the potential role of COX-2 in CSC-mediated tumor initiation, and suggest that COX-2 inhibition may help treat canine mammary tumors by targeting CSCs.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antigens, CD44/genetics/metabolism
		                        			;
		                        		
		                        			Biomarkers, Tumor/genetics/metabolism
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic/*genetics/metabolism
		                        			;
		                        		
		                        			Cyclooxygenase 2/*genetics/metabolism
		                        			;
		                        		
		                        			Dog Diseases/*genetics/metabolism
		                        			;
		                        		
		                        			Dogs
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Immunohistochemistry/veterinary
		                        			;
		                        		
		                        			Mammary Neoplasms, Animal/*genetics/metabolism
		                        			;
		                        		
		                        			Mammary Neoplasms, Experimental/*genetics/metabolism
		                        			;
		                        		
		                        			Neoplastic Stem Cells/*metabolism
		                        			;
		                        		
		                        			Octamer Transcription Factor-3/genetics/metabolism
		                        			;
		                        		
		                        			Receptor, Epidermal Growth Factor/genetics/metabolism
		                        			;
		                        		
		                        			Retrospective Studies
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail