1.Interferon-γ regulates cell malignant growth via the c-Abl/HDAC2 signaling pathway in mammary epithelial cells.
Wen-Bo REN ; Xiao-Jing XIA ; Jing HUANG ; Wen-Fei GUO ; Yan-Yi CHE ; Ting-Hao HUANG ; Lian-Cheng LEI
Journal of Zhejiang University. Science. B 2019;20(1):39-48
Interferon-γ (IFN-γ) has been used to control cancers in clinical treatment. However, an increasing number of reports have suggested that in some cases effectiveness declines after a long treatment period, the reason being unclear. We have reported previously that long-term IFN-γ treatment induces malignant transformation of healthy lactating bovine mammary epithelial cells (BMECs) in vitro. In this study, we investigated the mechanisms underlying the malignant proliferation of BMECs under IFN-γ treatment. The primary BMECs used in this study were stimulated by IFN-γ (10 ng/mL) for a long term to promote malignancy. We observed that IFN-γ could promote malignant cell proliferation, increase the expression of cyclin D1/cyclin-dependent kinase 4 (CDK4), decrease the expression of p21, and upregulate the expression of cellular-abelsongene (c-Abl) and histone deacetylase 2 (HDAC2). The HDAC2 inhibitor, valproate (VPA) and the c-Abl inhibitor, imatinib, lowered the expression level of cyclin D1/CDK4, and increased the expression level of p21, leading to an inhibitory effect on IFN-γ-induced malignant cell growth. When c-Abl was downregulated, the HDAC2 level was also decreased by promoted proteasome degradation. These data suggest that IFN-γ promotes the growth of malignant BMECs through the c-Abl/HDAC2 signaling pathway. Our findings suggest that long-term application of IFN-γ may be closely associated with the promotion of cell growth and even the carcinogenesis of breast cancer.
Animals
;
Carcinogenesis/pathology*
;
Cattle
;
Cell Cycle Proteins/metabolism*
;
Cell Proliferation/drug effects*
;
Cell Transformation, Neoplastic/pathology*
;
Cells, Cultured
;
Epithelial Cells/pathology*
;
Female
;
Histone Deacetylase 2/metabolism*
;
Imatinib Mesylate/pharmacology*
;
Interferon-gamma/pharmacology*
;
Mammary Glands, Animal/pathology*
;
Mammary Neoplasms, Experimental/pathology*
;
Proto-Oncogene Proteins c-abl/metabolism*
;
Signal Transduction
;
Valproic Acid/pharmacology*
2.Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells.
Jin Sung PARK ; Da Young CHANG ; Ji Hoi KIM ; Jin Hwa JUNG ; Joonseong PARK ; Se Hyuk KIM ; Young Don LEE ; Sung Soo KIM ; Haeyoung SUH-KIM
Experimental & Molecular Medicine 2013;45(2):e10-
Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.
Adolescent
;
Animals
;
Cell Death/drug effects
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cell Transformation, Neoplastic/drug effects/pathology
;
Child
;
Cytosine Deaminase/*genetics/therapeutic use
;
Fluorouracil/pharmacology
;
Genetic Therapy
;
Genomic Instability/drug effects
;
Humans
;
Karyotype
;
Mesenchymal Stromal Cells/*cytology/drug effects/metabolism
;
Mice
;
Multipotent Stem Cells/cytology/drug effects/metabolism
;
Neoplasms/therapy
;
Retroviridae/*metabolism
;
Time Factors
;
*Transduction, Genetic
3.Autophagy and cancer.
Experimental & Molecular Medicine 2012;44(2):109-120
Basal autophagy plays a critical role in maintaining cellular homeostasis and genomic integrity by degrading aged or malfunctioning organelles and damaged or misfolded proteins. However, autophagy also plays a complicated role in tumorigenesis and treatment responsiveness. It can be tumor-suppressing during the early stages of tumorigenesis (i.e., it is an anti-tumor mechanism), as reduced autophagy is found in tumor cells and may be associated with malignant transformation. In this case, induction of autophagy would seem to be beneficial for cancer prevention. In established tumors, however, autophagy can be tumor-promoting (i.e., it is a pro-tumor mechanism), and cancer cells can use enhanced autophagy to survive under metabolic and therapeutic stress. The pharmacological and/or genetic inhibition of autophagy was recently shown to sensitize cancer cells to the lethal effects of various cancer therapies, including chemotherapy, radiotherapy and targeted therapies, suggesting that suppression of the autophagic pathway may represent a valuable sensitizing strategy for cancer treatments. In contrast, excessive stimulation of autophagy may also provide a therapeutic strategy for treating resistant cancer cells having high apoptotic thresholds. In order for us to develop successful autophagy-modulating strategies against cancer, we need to better understand how the roles of autophagy differ depending on the tumor stage, cell type and/or genetic factors, and we need to determine how specific pathways of autophagy are activated or inhibited by the various anti-cancer therapies.
Anticarcinogenic Agents/therapeutic use
;
Autophagy/*physiology
;
Cell Transformation, Neoplastic/drug effects
;
Humans
;
Neoplasms/*drug therapy/metabolism/*pathology
4.Methylation status of P16 gene during malignant transformation of human bronchial epithelial cells induced by glycidyl methacrylate.
Jie HU ; Quan-kai WANG ; An-na WANG ; Lin DONG ; Jian-ning XU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(7):521-523
OBJECTIVETo analyze the methylation status of P16 gene at the different stages of malignant transformation of human bronchial epithelial cells (16HBE) induced by glycidyl methacrylate (GMA) and to explore the DNA methylation mechanisms.
METHODSThe cells exposed to GMA were harvested at the end of exposure (early stage), the 10th generation (protophase) and the 30th generation (anaphase), respectively. The methylation status of P16 promotor was detected by Methylation-specific PCR (MSP). The transformed 16HBE cells were compared with the normal 16HBE cells and the cells exposed to DMSO for methylation status.
RESULTSAt the early stage and protophase stage, the non-methylation status in P16 gene promotor of the normal 16HBE cells and the cells exposed to DMSO appeared, the methylation status in P16 gene promotor of the 16HBE cells exposed to GMA was detected to some extension. At the anaphase stage, the methylation status in P16 gene promotor of the 16HBE cells exposed to GMA or DMSO was detected to some extension.
CONCLUSIONMethylation status of P16 gene promoter was specific at the early stage and protophase stage of malignant transforming in 16HBE cells induced by GMA, which can serve as an early sensitive biological indicator for malignant transforming in 16HBE cells induced by GMA.
Bronchi ; cytology ; drug effects ; pathology ; Cell Transformation, Neoplastic ; genetics ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; genetics ; metabolism ; DNA Methylation ; Epithelial Cells ; drug effects ; pathology ; Epoxy Compounds ; toxicity ; Humans ; Methacrylates ; toxicity ; Promoter Regions, Genetic
5.Effect of monoamine oxidase inhibitor on the differentiation of malignant glioma cell.
Genbao SHAO ; Dandan BO ; Xiaojuan HAN ; Qinghua HE ; Yan ZHANG ; Jianrong SANG
Journal of Biomedical Engineering 2012;29(3):524-529
To investigate the effect of monoamine oxidase inhibitor tranylcypromine (TCP) on the differentiation of human U251 glioma cells, we treated U251 cells with TCP and/or 100 nmol/L histone deacetylase inhibitor trychostatin A (TSA). The differentiation of U251 cells was observed with inverted microscopy. The cell proliferation and cell cycle distribution were determined by MTT assay and flow cytometry, respectively. Apoptosis was observed by Hoechst 33258 staining. The levels of differentiation-related genes were assessed by real-time PCR and Western blotting. TCP-induced differentiation was characterized by typical morphological changes, inhibition of cellular proliferation, accumulation of cells in the G1 phase of the cell cycle, decreased expression of the pluripotency transcription factors Oct4 and Sox2, and increased expression of glial fibrillary acid protein (GFAP). The combination of TCP and TSA treatment also triggered an over-expression of GFAP. These findings suggest that TCP may induce differentiation of U251 glioma cells, and the differentiation process may be promoted by histone deacetylase inhibitor TSA.
Brain Neoplasms
;
pathology
;
Cell Line, Tumor
;
Cell Transformation, Neoplastic
;
drug effects
;
Glioma
;
pathology
;
Histone Deacetylase Inhibitors
;
pharmacology
;
Humans
;
Hydroxamic Acids
;
pharmacology
;
Monoamine Oxidase Inhibitors
;
pharmacology
;
Tranylcypromine
;
pharmacology
6.The effects of monocyte-macrophages on malignant transformation of human bronchial epithelial cells induced by extracts from coal tar pitch.
Fan-jing ZHOU ; Shao-feng ZHANG ; Fei-fei FENG ; Zhen YAN ; Wei WANG ; Yi-ming WU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(4):241-245
OBJECTIVETo study the effects of monocyte-macrophages (THP-1) in malignant transformation of human bronchial epithelial cells (BEAS-2B) cells induced by coal tar pitch (CTP) and the expression of TNF-α in the process of the cell malignant transformation.
METHODSBEAS-2B cells and THP-1 Cells were divided into four groups: coal tar pitch (CTP) group, benzo(a)pyrene [B(a)P] group, dimethyl sulfoxide (DMSO) group, BEAS-2B and THP-1 co-culture (co-culture group) group. Carcinogenesis model was established. The soft agar colony formation, chromosome aberrations and cell cycle tests were used to detect the cellular malignant transformation. The ELISA assay was utilized to measure the levels of TNF-α in the supernatant of CTP group and co-culture group.
RESULTSThe chromosome number abnormalities could be observed in early stage of the experiment (the 10th generation cells), which showed the increased ratio of aneuploid to polyploid, and the decreased number of diploid. The colony formation rate of co-culture group (the 20th generation cells) was 17.63‰ ± 0.97‰, which was significantly higher than that (13.94‰ ± 0.84‰) of CTP group and that (12.96‰ ± 1.62‰) of B(a)P group (P < 0.05). The proportion of S phase cells in the co-culture group was 44.49% ± 0.68%, which was significantly higher than that (38.19% ± 1.26%) of CTP group and that (36.41% ± 1.19%) of B(a)P group (P < 0.05). The TNF-α level in the co-culture group was significantly higher than that in CTP group (P = 0.001).
CONCLUSIONMonocyte-Macrophages can accelerate the malignant transformation of BEAS-2B cells induced by CTP and increase the expression level of TNF-α.
Bronchi ; cytology ; Cell Line ; Cell Transformation, Neoplastic ; chemically induced ; Coal Tar ; toxicity ; Coculture Techniques ; Epithelial Cells ; cytology ; drug effects ; pathology ; Humans ; Macrophages ; cytology ; Monocytes ; cytology ; Tumor Necrosis Factor-alpha ; metabolism
7.Modulating autophagy: a strategy for cancer therapy.
Jun-Lin LI ; Shao-Liang HAN ; Xia FAN
Chinese Journal of Cancer 2011;30(10):655-668
Autophagy is a process in which long-lived proteins, damaged cell organelles, and other cellular particles are sequestered and degraded. This process is important for maintaining the cellular microenvironment when the cell is under stress. Many studies have shown that autophagy plays a complex role in human diseases, especially in cancer, where it is known to have paradoxical effects. Namely, autophagy provides the energy for metabolism and tumor growth and leads to cell death that promotes tumor suppression. The link between autophagy and cancer is also evident in that some of the genes that regulate carcinogenesis, oncogenes and tumor suppressor genes, participate in or impact the autophagy process. Therefore, modulating autophagy will be a valuable topic for cancer therapy. Many studies have shown that autophagy can inhibit the tumor growth when autophagy modulators are combined with radiotherapy and/or chemotherapy. These findings suggest that autophagy may be a potent target for cancer therapy.
Antineoplastic Agents
;
pharmacology
;
therapeutic use
;
Apoptosis
;
drug effects
;
Autophagy
;
drug effects
;
Cell Transformation, Neoplastic
;
drug effects
;
Drug Resistance, Neoplasm
;
Humans
;
Molecular Targeted Therapy
;
NF-kappa B
;
pharmacology
;
Neoplasms
;
drug therapy
;
metabolism
;
pathology
;
Proto-Oncogene Proteins c-bcl-2
;
pharmacology
;
Signal Transduction
;
Tumor Microenvironment
;
Tumor Suppressor Protein p53
;
pharmacology
8.Isolation and identification of side population cells in human lung adenocarcinoma cell line A549.
Tong XIE ; Li LI ; Dan-rong LI ; Nai-quan MAO ; De-seng LIU ; Chuan-tian ZUO ; Wei ZHANG ; Ding-ming HUANG
Chinese Journal of Oncology 2011;33(2):84-90
OBJECTIVETo isolate and characterize the side population cells (SP cells) in the lung adenocarcinomas cell line A549.
METHODSThe protein expression of ABCG2 in human lung adenocarcinoma cell line A549 was detected by immunohistochemistry. SP and NSP cells in the cell line A549 were isolated by FACS, and their differentiation was analysed. ABCG2 expression in the two cell subsets was detected by RT-PCR. The cell growth curves, cell division indexes, cell cycles, plate clone formation tests, migration and invasion assays, chemotherapeutic susceptibility tests, tests of the intracellular drug levels, and the tumor cell implantation experiments on nude mice were applied to study the biological properties of the two cell subsets. The expression of ABCG2 in the transplanted tumor in nude mice was detected by immunohistochemistry and RT-PCR.
RESULTSThe positive rate of ABCG2 expression in the A549 cells by immunohistochemistry was 2.13%. SP and NSP cells were isolated by FACS. The SP cells could produce both SP and NSP cells, while NSP cells only produced NSP cells. SP cells expressed ABCG2, but NSP cells did not. The proliferation and migration abilities of the two cell subsets were similar, but the invasion and tumorigenic ability of SP cells was significantly higher than that of NSP cells. The susceptibilities to DDP and its intracellular levels of the two cell subsets were similar, but the susceptibilities to 5-FU, VP16, NVB and GEM and their intracellular levels of NSP cells were significantly higher than those of the SP cells.
CONCLUSIONSSP cells in the human lung adenocarcinomas cell line A549 is enriched with tumor stem cells. An effective way to get lung adenocarcinomas stem cells is to isolate SP cells by FACS.
ATP-Binding Cassette Transporters ; metabolism ; Adenocarcinoma ; pathology ; Animals ; Cell Cycle ; Cell Differentiation ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cell Transformation, Neoplastic ; metabolism ; Fluorouracil ; metabolism ; Humans ; Lung Neoplasms ; pathology ; Mice, Nude ; Neoplasm Proteins ; metabolism ; Neoplasm Transplantation ; Neoplastic Stem Cells ; drug effects ; Side-Population Cells
9.Alternative expression and sequence of human elongation factor-1 delta during malignant transformation of human bronchial epithelial cells induced by cadmium chloride.
Yi-Xiong LEI ; Min WANG ; Lian WEI ; Xi LU ; Hua-Zhao LIN
Biomedical and Environmental Sciences 2010;23(2):151-157
OBJECTIVETo study the alternative expression and sequence of human elongation factor-1 delta (human EF-1 delta p31) during malignant transformation of human bronchial epithelial cells induced by cadmium chloride (CdC12) and its possible mechanism.
METHODSTotal RNA was isolated at different stages of transformed human bronchial epithelial cells (16HBE) induced by CdCl2 at a concentration of 5.0 microM. Special primers and probe for human EF-1 delta p31 were designed and expression of human EF-1 delta mRNA from different cell lines was detected with fluorescent quantitative PCR technique. EF-18 cDNA from different cell lines was purified and cloned into pMD 18-T vector followed by confirming and sequencing analysis.
RESULTSThe expressions of human EF-1 beta p31 at different stages of 16HBE cells transformed by CdCl2 was elevated (P < 0.01 or P < 0.05). Compared with their corresponding non-transformed cells, the overexpression level of EF-1 delta p31 was averagely increased 2.9 folds in Cd-pretransformed cells, 4.3 folds in Cd-transformed cells and 7.2 folds in Cd-tumorigenic cells. No change was found n the sequence of overexpressed EF-1beta p31 at different stages of 16HBE cells transformed by CdCl2.
CONCLUSIONOverexpression of human EF-1beta p31 is positively correlated with malignant transformation of 16HBE cells induced by CdC12, but is not correlated with DNA mutations.
Cadmium Chloride ; Cell Line ; Cell Transformation, Neoplastic ; chemically induced ; metabolism ; Epithelial Cells ; drug effects ; metabolism ; pathology ; Gene Expression Regulation, Neoplastic ; Humans ; Peptide Elongation Factor 1 ; genetics ; metabolism ; Respiratory Mucosa ; drug effects ; metabolism ; pathology ; Sequence Analysis, DNA
10.Research progress in cancer stem cells and their drug resistance.
Hong YU ; Chang-Ming ZHANG ; Yong-Shou WU
Chinese Journal of Cancer 2010;29(3):261-264
Traditional theories suggest that tumor growth occurs when all tumor cells work together and result in proliferation, so treatment has been mainly directed against the majority of the cells in tumor tissue, which often relapse, metastasize, and lead to treatment failure. As cancer stem cells have been successfully isolated from different tumor tissues, in-depth study of their function in relation to traditional cancer treatment faces enormous challenges. At the same time, a new theoretical basis has been provided for the in-depth study of tumorigenesis and the evaluation of prognosis of cancer therapy. Also, new ideas have been introduced for cancer therapy. Therefore, radical treatment of cancer can be achieved through killing cancer stem cells. This article reviews the research progress on cancer stem cells and their drug resistance.
ATP-Binding Cassette Transporters
;
metabolism
;
Animals
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
Cell Hypoxia
;
Cell Transformation, Neoplastic
;
DNA Repair
;
DNA, Neoplasm
;
genetics
;
Drug Resistance, Multiple
;
Drug Resistance, Neoplasm
;
Humans
;
Neoplasms
;
genetics
;
metabolism
;
pathology
;
Neoplastic Stem Cells
;
drug effects
;
pathology

Result Analysis
Print
Save
E-mail