1.2-Hexyl-4-Pentylenic Acid (HPTA) Stimulates the Radiotherapy-induced Abscopal Effect on Distal Tumor through Polarization of Tumor-associated Macrophages.
Wen Hua DUAN ; Li Ya JIN ; Zu Chao CAI ; David LIM ; Zhi Hui FENG
Biomedical and Environmental Sciences 2021;34(9):693-704
		                        		
		                        			Objective:
		                        			The aim of this study was to explore the effects of 2-hexyl-4-pentylenic acid (HPTA) in combination with radiotherapy (RT) on distant unirradiated breast tumors.
		                        		
		                        			Methods:
		                        			Using a rat model of chemical carcinogen (7,12-dimethylbenz[a]anthracene,DMBA)-induced breast cancer, tumor volume was monitored and treatment response was evaluated by performing HE staining, immunohistochemistry, immunofluorescence, qRT-PCR, and western blot analyses.
		                        		
		                        			Results:
		                        			The results demonstrated that HPTA in combination with RT significantly delayed the growth of distant, unirradiated breast tumors. The mechanism of action included tumor-associated macrophage (TAM) infiltration into distant tumor tissues, M1 polarization, and inhibition of tumor angiogenesis by IFN-γ.
		                        		
		                        			Conclusion
		                        			The results suggest that the combination of HPTA with RT has an abscopal effect on distant tumors
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antineoplastic Agents/therapeutic use*
		                        			;
		                        		
		                        			Cell Proliferation/radiation effects*
		                        			;
		                        		
		                        			Combined Modality Therapy
		                        			;
		                        		
		                        			Cytokines/immunology*
		                        			;
		                        		
		                        			Fatty Acids, Unsaturated/therapeutic use*
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Mammary Neoplasms, Experimental/radiotherapy*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Tumor-Associated Macrophages/radiation effects*
		                        			
		                        		
		                        	
2.Low-intensity pulsed ultrasound stimulates proliferation of stem/progenitor cells: what we need to know to translate basic science research into clinical applications.
Yan TAN ; Yang GUO ; Amanda B REED-MALDONADO ; Zheng LI ; Guiting LIN ; Shu-Jie XIA ; Tom F LUE
Asian Journal of Andrology 2021;23(6):602-610
		                        		
		                        			
		                        			Low-intensity pulsed ultrasound (LIPUS) is a promising therapy that has been increasingly explored in basic research and clinical applications. LIPUS is an appealing therapeutic option as it is a noninvasive treatment that has many advantages, including no risk of infection or tissue damage and no known adverse reactions. LIPUS has been shown to have many benefits including promotion of tissue healing, angiogenesis, and tissue regeneration; inhibition of inflammation and pain relief; and stimulation of cell proliferation and differentiation. The biophysical mechanisms of LIPUS remain unclear and the studies are ongoing. In recent years, more and more research has focused on the relationship between LIPUS and stem/progenitor cells. A comprehensive search of the PubMed and Embase databases to July 2020 was performed. LIPUS has many effects on stem cells. Studies show that LIPUS can stimulate stem cells in vitro; promote stem cell proliferation, differentiation, and migration; maintain stem cell activity; alleviate the problems of insufficient seed cell source, differentiation, and maturation; and circumvent the low efficiency of stem cell transplantation. The mechanisms involved in the effects of LIPUS are not fully understood, but the effects demonstrated in studies thus far have been favorable. Much additional research is needed before LIPUS can progress from basic science research to large-scale clinical dissemination and application.
		                        		
		                        		
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Stem Cells/radiation effects*
		                        			;
		                        		
		                        			Ultrasonic Therapy/methods*
		                        			;
		                        		
		                        			Ultrasonic Waves
		                        			
		                        		
		                        	
3.Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation.
Shu CHEN ; Qian WANG ; Bing HAN ; Jia WU ; Ding-Kun LIU ; Jun-Dong ZOU ; Mi WANG ; Zhi-Hui LIU
Journal of Zhejiang University. Science. B 2020;21(4):327-340
		                        		
		                        			
		                        			Combined radiation-wound injury (CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells (HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells (HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8 (CCK-8) assay. The secretion of pro-inflammatory cytokines (human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay (ELISA). The expression of pro-angiogenic factors (vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)) mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Relevant molecules of the nuclear factor-κB (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs (HPMSCs/ leptin) exhibited better cell proliferation, migration, and angiogenic potential (expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines (human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.
		                        		
		                        		
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Cytokines/biosynthesis*
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells/radiation effects*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation/etiology*
		                        			;
		                        		
		                        			Leptin/pharmacology*
		                        			;
		                        		
		                        			Mesenchymal Stem Cells/physiology*
		                        			;
		                        		
		                        			Neovascularization, Physiologic/physiology*
		                        			;
		                        		
		                        			Placenta/cytology*
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			STAT3 Transcription Factor/genetics*
		                        			;
		                        		
		                        			Transcription Factor RelA/genetics*
		                        			;
		                        		
		                        			X-Rays
		                        			
		                        		
		                        	
4.Effect of low-frequency pulsed electromagnetic fields on activity of rat calvarial osteoblasts through IGF-1R/NO signaling pathway.
Jiale SHAO ; Zhizhong LI ; Jian ZHOU ; Kai LI ; Rong QIN ; Keming CHEN
Journal of Zhejiang University. Medical sciences 2019;48(2):158-164
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of low-frequency pulsed electromagnetic fields (PEMF) on the maturation and mineralization of rat cranial osteoblasts and its relation to IGF-1R/NO signaling pathway.
		                        		
		                        			METHODS:
		                        			The rat osteoblasts were isolated and cultured and randomly divided into blank control group, PEMF group, GSK group (IGF-1R blocker) and PEMF+GSK group. The cells were treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. After 3 d of PEMF treatment, the expressions of protein kinase (AKT), inducible nitric oxide synthase (iNOS) and cGMP-dependent protein kinase (PKG) were detected by Western blotting; on 6 d of PEMF treatment alkaline phosphatase (ALP) activity was determined; on 12 d of PEMF treatment the calcification nodule formation was demonstrated by Alizarin red staining.
		                        		
		                        			RESULTS:
		                        			NO level was significantly increased in rat osteoblasts treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. Western blot analysis showed that the expressions of AKT, iNOS and PKG protein in PEMF group were higher than those in the control group (all <0.01); the ALP activity was increased(<0.05), and the PEMF group had the largest area of Alizarin red staining (<0.01). The expressions of AKT, iNOS and PKG protein in GSK group were lower than those in the control group; the ALP activity was decreased (<0.05), and the GSK group had the least area of Alizarin red staining (<0.01). The expressions of AKT, iNOS, PKG protein, the ALP activity and the area of Alizarin red staining in PEMF+GSK group were between PEMF group and GSK group.
		                        		
		                        			CONCLUSIONS
		                        			PEMF may enhance the maturation and mineralization of rat cranial osteoblasts through IGF-1R/NO signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Electromagnetic Fields
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Osteoblasts
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Receptor, IGF Type 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			radiation effects
		                        			
		                        		
		                        	
5.Effects and mechanisms of electro-acupuncture on proliferation and differentiation of neural stem cells in C57 mice exposed to different doses of X-ray radiation.
Xin WU ; Shao-Hua SU ; Ning-Ning SUN ; Ming-Hui LYU ; Song-Jiang ZHANG ; Jian-Feng GAO
Acta Physiologica Sinica 2019;71(3):431-438
		                        		
		                        			
		                        			The present study was aimed to investigate the effects and mechanisms of electro-acupuncture (EA) on proliferation and differentiation of neural stem cells in the hippocampus of C57 mice exposed to different doses of X-ray radiation. Thirty-day-old C57BL/6J mice were randomly divided into control, irradiation, and EA groups. The control group was not treated with irradiation. The irradiation groups were exposed to different doses of X-ray (4, 8 or 16 Gy) for 10 min. The EA groups were electro-acupunctured at Baihui, Fengfu and bilateral Shenyu for 3 courses of treatment after X-ray radiation. Immunohistochemistry was used to evaluate proliferation and differentiation of the hippocampal neural stem cell. RT-PCR and Western blot were used to detect mRNA and protein expressions of Notch1 and Mash1 in the hippocampus, respectively. The results showed that, compared with the control group, the numbers of BrdU positive cells (4, 8 Gy subgroup) and BrdU/NeuN double-labeling positive cells (3 dose subgroups) were decreased significantly in the irradiation group, but the above changes could be reversed by EA. Compared with the control group, the number of BrdU/GFAP double-labeling positive cells in each dose subgroup of irradiation group was decreased significantly, while EA could reverse the change of 4 and 8 Gy dose subgroups. In addition, compared with the control group, the expression levels of Notch1 mRNA and protein in hippocampus were up-regulated, and the expression levels of Mash1 mRNA and protein were significantly decreased in each dose subgroup of irradiation group. Compared with irradiation group, the expression levels of Notch1 mRNA and protein in hippocampus of EA group were decreased significantly in each dose subgroup, and the expression levels of Mash1 mRNA and protein were increased significantly in 4 and 8 Gy subgroups. These results suggest that irradiation affects the proliferation and differentiation of neural stem cells in hippocampus of mice, whereas EA may significantly increase the proliferation and differentiation of hippocampal neural stem cells via the regulation of Notch signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Basic Helix-Loop-Helix Transcription Factors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Electroacupuncture
		                        			;
		                        		
		                        			Hippocampus
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Neural Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Receptor, Notch1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			X-Rays
		                        			;
		                        		
		                        			adverse effects
		                        			
		                        		
		                        	
6.Effects of low level laser irradiation on the osteogenic capacity of sodium alginate/gelatin/human adipose-derived stem cells 3D bio-printing construct.
Hua Xin SUI ; Pei Jun LV ; Yong WANG ; Yu Chi FENG
Journal of Peking University(Health Sciences) 2018;50(5):868-875
		                        		
		                        			OBJECTIVE:
		                        			To explore the effects of low level laser irradiation (LLLI) on the osteogenic capacity of three-dimensional (3D) structure by 3D bio-printing construct used human adipose-derived stem cells (hASCs) as seed cells.
		                        		
		                        			METHODS:
		                        			Using hASCs as seed cells, we prepared sodium alginate/gelatin/hASCs 3D bio-printing construct, and divided them into four groups: PM (proliferative medium), PM+LLLI, OM (osteogenic medium) and OM+LLLI, and the total doses of LLLI was 4 J/cm². Immunofluorescence microscopy was used to observe the viability of the cells, and analyze the expression of the osteogenesis-related protein Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN).
		                        		
		                        			RESULTS:
		                        			The 3D constructs obtained by printing were examined by microscope. The sizes of these 3D constructs were 10 mm×10 mm×1.5 mm. The wall thickness of the printed gelatin mold was approximately 1 mm, and the pores were round and had a diameter of about 700 μm. The cell viability of sodium alginate/gelatin/hASCs 3D bio-printing construct was high, and the difference among the four groups was not significant. On day 7, the expression of OCN from high to low was group OM+LLLI, PM+LLLI, OM and PM. There were significant differences among these groups (P<0.01), but there was no significant difference between group PM+LLLI and OM. On day 14, the expression of OCN in each group was higher than that on day 7, and there was no significant difference between group OM+LLLI and OM. The expression of Runx2 in group OM+LLLI was more than 90%, significantly higher than that in group OM (P<0.01). But the expression of Runx2 in group PM+LLLI and OM+LLLI were significantly lower than that in the non-irradiated groups. The expression of osteogenesis-related protein Runx2 and OCN were higher in OM groups than in PM groups. Furthermore, the irradiated groups were significantly higher than the non-irradiated groups.
		                        		
		                        			CONCLUSION
		                        			LLLI does not affect the cell viability of sodium alginate/gelatin/hASCs 3D bio-printing construct, and may promote the osteogenic differentiation of hASCs.
		                        		
		                        		
		                        		
		                        			Adipocytes/radiation effects*
		                        			;
		                        		
		                        			Alginates
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Gelatin
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lasers
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			Printing, Three-Dimensional
		                        			;
		                        		
		                        			Stem Cells/radiation effects*
		                        			
		                        		
		                        	
7.Microwave Hyperthermia Combined with Gemcitabine Inhibits Proliferation and Induces Apoptosis of Human Lung Squamous Carcinoma Cells.
Yang YANG ; Yanyan ZHAO ; Shenglin MA ; Daoke YANG
Chinese Journal of Lung Cancer 2018;21(11):805-814
		                        		
		                        			BACKGROUND:
		                        			Lung cancer is one of the highest morbidity and mortality in the world and it is very important to find an effective anti-tumor method. Microwave hyperthermia, a new treatment technology, has been getting more and more attention. This study was designed to investigate the effects of microwave hyperthermia combined with gemcitabine on the proliferation and apoptosis of human lung squamous cell carcinoma (NCI-H1703 and NCI-H2170) in vitro.
		                        		
		                        			METHODS:
		                        			The proliferation of cells treated with microwave hyperthermia, the effect of gemcitabine on cell proliferation and the proliferation of cells treated with different methods of microwave hyperthermia and gemcitabine were detected by CCK-8 assay. Colony formation assay was used to measure the colony formation of human lung squamous cell carcinoma cells. Flow cytometry assay was used to detect the total apoptosis rates of the treated cells. Caspase-3, Caspase-8 activity assay was used to detect the activity of Caspase-3, Caspase-8 enzyme in each group of cells. CCK-8 assay was used to detect the effect of control group, AC-DEVD (Caspase-3 inhibitor) group, thermalization combined group, and thermal AC-DEVD combined group on cell proliferation. The levels of p53, Caspase-3, Cleaved-Caspase-3, PARP, Bax and BCL-2 protein expression were detected using Western blot assay.
		                        		
		                        			RESULTS:
		                        			Our results demonstrated that microwave hyperthermia inhibited the proliferation of lung squamous cell carcinoma. The IC₅₀ values of gemcitabine for the two cells were 8.89 μmol/L and 44.18 μmol/L, respectively. The first chemotherapy after microwave hyperthermia has synergistic effect on the two lung squamous cell carcinoma cells and can significantly inhibit the cell clone formation (P<0.001), promote cell apoptosis (P<0.001) and increase Caspase-3 enzyme activity (P<0.001). However, it has no effect on Caspase-8 enzyme activity (P>0.05). Furthermore, Western blot analysis showed that microwave hyperthermia combined with gemcitabine could up-regulate the p53, Caspase-3, Cleaved-Caspase-3, Cleaved-PARP and Bax protein expression.
		                        		
		                        			CONCLUSIONS
		                        			Microwave hyperthermia combined with gemcitabine remarkably inhibit the proliferation and induce apoptosis of human lung squamous cell carcinoma in vitro. This effect may be associated with the activation of p53, cleavage of PARP protein, and induced the Caspase-3 dependent apoptosis.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Carcinoma, Squamous Cell
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Caspase 8
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Combined Modality Therapy
		                        			;
		                        		
		                        			Deoxycytidine
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hyperthermia, Induced
		                        			;
		                        		
		                        			Lung Neoplasms
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Microwaves
		                        			
		                        		
		                        	
8.Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.
Yohanes Widodo WIROHADIDJOJO ; Arief BUDIYANTO ; Hardyanto SOEBONO
Yonsei Medical Journal 2016;57(5):1282-1285
		                        		
		                        			
		                        			To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm-2) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.
		                        		
		                        		
		                        		
		                        			Blood Platelets/*cytology/*metabolism
		                        			;
		                        		
		                        			Cell Movement/radiation effects
		                        			;
		                        		
		                        			Cell Proliferation/radiation effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Collagen/metabolism
		                        			;
		                        		
		                        			Fibrin/*metabolism
		                        			;
		                        		
		                        			Fibroblasts/*cytology/metabolism/*radiation effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Skin/*cytology
		                        			;
		                        		
		                        			Time Factors
		                        			;
		                        		
		                        			Ultraviolet Rays/*adverse effects
		                        			
		                        		
		                        	
9.Heijiangdan ointment relieves oxidative stress from radiation dermatitis induced by (60)Co γ-ray in mice.
Lin YANG ; Ming-wei YU ; Xiao-min WANG ; Yi ZHANG ; Guo-wang YANG ; Xiao-qin LUO ; Rui-yun PENG ; Ya-bing GAO ; Li ZHAO ; Li-feng WANG
Chinese journal of integrative medicine 2016;22(2):110-115
OBJECTIVETo investigate the effects of Heijiangdan Ointment ( HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.
METHODSFemale Wistar mice with grade 4 radiation dermatitis induced by (60)Co γ-rays were randomly divided into four groups (n=12 per group); the HJD-treated, recombinant human epidermal growth factor (rhEGF)-treated, Trolox-treated, and untreated groups, along with a negative control group. On the 11th and 21st days after treatment, 6 mice in each group were chosen for evaluation. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), and lactate dehydrogenase (LDH) were detected using spectrophotometric methods. The fibroblast mitochondria were observed by transmission electron microscopy (TEM). The expressions of fibroblast growth factor 2 (FGF-2) and transforming growth factor β1 (TGF-β1) were analyzed by western blot.
RESULTSCompared with the untreated group, the levels of SOD, MDA and LDH, on the 11th and 21st days after treatment showed significant difference (P<0.05). TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured, while in the HJD group, the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed. The expressions of FGF-2 and TGF-β1 increased in the untreated group compared with the negative control group (P<0.05). After treatment, the expression of FGF-2, rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group (P<0.05), or compared with the negative control group (P<0.05). The expression of TGF-β1 showed significant difference between untreated and negative control groups (P<0.05). HJD and Trolox increased the level of TGF-β1 and the difference was marked as compared with the untreated and negative control groups (P<0.05).
CONCLUSIONHJD relieves oxidative stress-induced injury, increases the antioxidant activity, mitigates the fibroblast mitochondrial damage, up-regulates the expression of growth factor, and promotes mitochondrial repair in mice.
Animals ; Biological Products ; pharmacology ; therapeutic use ; Cell Proliferation ; drug effects ; radiation effects ; Cobalt Radioisotopes ; Dermatitis ; complications ; drug therapy ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Female ; Fibroblast Growth Factor 2 ; genetics ; metabolism ; Fibroblasts ; drug effects ; pathology ; radiation effects ; Gamma Rays ; Humans ; L-Lactate Dehydrogenase ; metabolism ; Malondialdehyde ; metabolism ; Mice ; Mitochondria ; drug effects ; metabolism ; radiation effects ; Ointments ; Oxidative Stress ; drug effects ; radiation effects ; Pharmaceutical Preparations ; Radiation Injuries ; complications ; drug therapy ; pathology ; Superoxide Dismutase ; metabolism ; Transforming Growth Factor beta1 ; genetics ; metabolism ; Up-Regulation ; drug effects ; radiation effects
10.Expressiona of c-Jun and collagens I and III in cultured human skin fibroblasts are affected by infrared ray radiation.
Ping LIU ; Rong-Li YANG ; Hui SU ; Lin-Li LI ; Jian-Wen SONG ; Ning LU ; Yu-Ze LIU
Journal of Southern Medical University 2016;36(2):163-169
OBJECTIVETo observe the effect of solar infrared ray (IR) radiation on the expressions of c-Jun and collagens I and III in cultured human skin fibroblasts (HSFs) and explore the molecular mechanism by which IR radiation causes aging of the skin.
METHODSPrimarily cultured HSFs exposed to IR radiation were examined for changes of the cell viability with MTT assay. The mRNA and protein expressions of c-Jun and collagens I and III was detected with real-time quantitative PCR and immunocytochemistry.
RESULTSMTT assay showed that IR irradiation caused inhibition of cell proliferation compared with the control cells. The mRNA and protein expression of collagen I was decreased significantly by IR irradiation with the increase of the irradiation dose (P<0.01). HSFs irradiated by IR for 12 h showed a dose-dependent reduction of the expression of collagen type III mRNA and protein (P<0.05, P<0.01), but the expression increased dose-dependently in response to IR exposure for 24 h (P<0.05 or 0.01). IR irradiation enhanced the mRNA and protein expression of c-Jun in a dose-dependence manner (P<0.05 or 0.01).
CONCLUSIONSIR irradiation can increase the expression of c-Jun, inhibit the expression of collagen I, and cause disturbance in collagen III expression in human skin fibroblasts, which may be one of the mechanism of IR radiation to initiate and promote skin photoaging.
Cell Proliferation ; Cell Survival ; Cells, Cultured ; Collagen Type I ; metabolism ; Collagen Type III ; metabolism ; Fibroblasts ; metabolism ; radiation effects ; Humans ; Infrared Rays ; Proto-Oncogene Proteins c-jun ; metabolism ; RNA, Messenger ; metabolism ; Skin ; cytology ; Skin Aging ; Ultraviolet Rays
            
Result Analysis
Print
Save
E-mail