1.Microwave Hyperthermia Combined with Gemcitabine Inhibits Proliferation and Induces Apoptosis of Human Lung Squamous Carcinoma Cells.
Yang YANG ; Yanyan ZHAO ; Shenglin MA ; Daoke YANG
Chinese Journal of Lung Cancer 2018;21(11):805-814
BACKGROUND:
Lung cancer is one of the highest morbidity and mortality in the world and it is very important to find an effective anti-tumor method. Microwave hyperthermia, a new treatment technology, has been getting more and more attention. This study was designed to investigate the effects of microwave hyperthermia combined with gemcitabine on the proliferation and apoptosis of human lung squamous cell carcinoma (NCI-H1703 and NCI-H2170) in vitro.
METHODS:
The proliferation of cells treated with microwave hyperthermia, the effect of gemcitabine on cell proliferation and the proliferation of cells treated with different methods of microwave hyperthermia and gemcitabine were detected by CCK-8 assay. Colony formation assay was used to measure the colony formation of human lung squamous cell carcinoma cells. Flow cytometry assay was used to detect the total apoptosis rates of the treated cells. Caspase-3, Caspase-8 activity assay was used to detect the activity of Caspase-3, Caspase-8 enzyme in each group of cells. CCK-8 assay was used to detect the effect of control group, AC-DEVD (Caspase-3 inhibitor) group, thermalization combined group, and thermal AC-DEVD combined group on cell proliferation. The levels of p53, Caspase-3, Cleaved-Caspase-3, PARP, Bax and BCL-2 protein expression were detected using Western blot assay.
RESULTS:
Our results demonstrated that microwave hyperthermia inhibited the proliferation of lung squamous cell carcinoma. The IC₅₀ values of gemcitabine for the two cells were 8.89 μmol/L and 44.18 μmol/L, respectively. The first chemotherapy after microwave hyperthermia has synergistic effect on the two lung squamous cell carcinoma cells and can significantly inhibit the cell clone formation (P<0.001), promote cell apoptosis (P<0.001) and increase Caspase-3 enzyme activity (P<0.001). However, it has no effect on Caspase-8 enzyme activity (P>0.05). Furthermore, Western blot analysis showed that microwave hyperthermia combined with gemcitabine could up-regulate the p53, Caspase-3, Cleaved-Caspase-3, Cleaved-PARP and Bax protein expression.
CONCLUSIONS
Microwave hyperthermia combined with gemcitabine remarkably inhibit the proliferation and induce apoptosis of human lung squamous cell carcinoma in vitro. This effect may be associated with the activation of p53, cleavage of PARP protein, and induced the Caspase-3 dependent apoptosis.
Apoptosis
;
drug effects
;
radiation effects
;
Carcinoma, Squamous Cell
;
pathology
;
Caspase 3
;
metabolism
;
Caspase 8
;
metabolism
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
radiation effects
;
Combined Modality Therapy
;
Deoxycytidine
;
analogs & derivatives
;
pharmacology
;
Humans
;
Hyperthermia, Induced
;
Lung Neoplasms
;
pathology
;
Microwaves
2.Heijiangdan ointment relieves oxidative stress from radiation dermatitis induced by (60)Co γ-ray in mice.
Lin YANG ; Ming-wei YU ; Xiao-min WANG ; Yi ZHANG ; Guo-wang YANG ; Xiao-qin LUO ; Rui-yun PENG ; Ya-bing GAO ; Li ZHAO ; Li-feng WANG
Chinese journal of integrative medicine 2016;22(2):110-115
OBJECTIVETo investigate the effects of Heijiangdan Ointment ( HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.
METHODSFemale Wistar mice with grade 4 radiation dermatitis induced by (60)Co γ-rays were randomly divided into four groups (n=12 per group); the HJD-treated, recombinant human epidermal growth factor (rhEGF)-treated, Trolox-treated, and untreated groups, along with a negative control group. On the 11th and 21st days after treatment, 6 mice in each group were chosen for evaluation. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), and lactate dehydrogenase (LDH) were detected using spectrophotometric methods. The fibroblast mitochondria were observed by transmission electron microscopy (TEM). The expressions of fibroblast growth factor 2 (FGF-2) and transforming growth factor β1 (TGF-β1) were analyzed by western blot.
RESULTSCompared with the untreated group, the levels of SOD, MDA and LDH, on the 11th and 21st days after treatment showed significant difference (P<0.05). TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured, while in the HJD group, the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed. The expressions of FGF-2 and TGF-β1 increased in the untreated group compared with the negative control group (P<0.05). After treatment, the expression of FGF-2, rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group (P<0.05), or compared with the negative control group (P<0.05). The expression of TGF-β1 showed significant difference between untreated and negative control groups (P<0.05). HJD and Trolox increased the level of TGF-β1 and the difference was marked as compared with the untreated and negative control groups (P<0.05).
CONCLUSIONHJD relieves oxidative stress-induced injury, increases the antioxidant activity, mitigates the fibroblast mitochondrial damage, up-regulates the expression of growth factor, and promotes mitochondrial repair in mice.
Animals ; Biological Products ; pharmacology ; therapeutic use ; Cell Proliferation ; drug effects ; radiation effects ; Cobalt Radioisotopes ; Dermatitis ; complications ; drug therapy ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Female ; Fibroblast Growth Factor 2 ; genetics ; metabolism ; Fibroblasts ; drug effects ; pathology ; radiation effects ; Gamma Rays ; Humans ; L-Lactate Dehydrogenase ; metabolism ; Malondialdehyde ; metabolism ; Mice ; Mitochondria ; drug effects ; metabolism ; radiation effects ; Ointments ; Oxidative Stress ; drug effects ; radiation effects ; Pharmaceutical Preparations ; Radiation Injuries ; complications ; drug therapy ; pathology ; Superoxide Dismutase ; metabolism ; Transforming Growth Factor beta1 ; genetics ; metabolism ; Up-Regulation ; drug effects ; radiation effects
3.Autophagy inhibitor 3-methyladenine enhances the sensitivity of nasopharyngeal carcinoma cells to chemotherapy and radiotherapy.
Lele SONG ; Linyan MA ; Gende CHEN ; Yingying HUANG ; Xiaojin SUN ; Chenchen JIANG ; Hao LIU
Journal of Central South University(Medical Sciences) 2016;41(1):9-18
OBJECTIVE:
To explore the effects of 3-methyladenine (3-MA, an autophagy inhibitor) on sensitivities of nasopharyngeal carcinoma cells to radiotherapy and chemotherapy and the underlying mechanisms.
METHODS:
Cell proliferation was examined by MTT and colony formation assay, while cell apoptosis was evaluated by annexin V/PI double staining and 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI) staining. Mitochondrial membrane potential was measured by commercial kit (JC-1). The expression of endoplasmic reticulum stress (ERS)-related protein, glucose-regulated protein 78 (GRP78) and autophagy-related protein beclin1, microtubule-associated protein 1 light chain 3 (LC3) were examined by Western blot.
RESULTS:
Cisplatin (DDP), ionizing radiation (IR) or tunicamycin (TM) treatment obviously inhibited the proliferation of HONE-1 cells in a concentration-dependent and time-dependent manner. Compared with control group, pretreatment with 1 mmol/L of 3-MA significantly
reduced cell viability and enhanced the apoptosis in the DDP (6.00 μmol/L), 4.00 Gy IR or TM (1.00 μmol/L) groups. There was no significant difference in the apoptosis between the DDP (5.8%) and 4Gy IR (6.7%) groups. Compared with the control group, protein levels of GRP78, beclin1 and lipid-conjugated membrane-bound form (LC3-II) were significantly increased after the treatment of DDP, 4.00 Gy IR or TM, which were inhibited by pretreatment of 3-MA.
CONCLUSION
3-MA can sensitize HONE-1 cells to chemotherapy and radiotherapy, which is related to prevention of endoplasmic reticulum stress-induced autophagy in nasopharyngeal carcinoma cells.
Adenine
;
analogs & derivatives
;
pharmacology
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
metabolism
;
Autophagy
;
Beclin-1
;
Carcinoma
;
Cell Line, Tumor
;
drug effects
;
radiation effects
;
Cell Proliferation
;
Cell Survival
;
Cisplatin
;
pharmacology
;
Endoplasmic Reticulum Stress
;
Heat-Shock Proteins
;
metabolism
;
Humans
;
Membrane Potential, Mitochondrial
;
Membrane Proteins
;
metabolism
;
Microtubule-Associated Proteins
;
metabolism
;
Nasopharyngeal Carcinoma
;
Nasopharyngeal Neoplasms
;
pathology
;
Radiation, Ionizing
;
Radiation-Sensitizing Agents
;
pharmacology
;
Tunicamycin
;
pharmacology
4.The Radiosensitizing Effect of Resveratrol on Hopypharyngeal Carcinoma Cell Line FADU and its Effect on the Cell Cycle.
Yuan SHAO ; Fang QUAN ; Hong-hui LI ; Xiao-bao YAO ; Qian ZHAO ; Rui-min ZHAO
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(6):699-703
OBJECTIVETo study the radiosensitizing effect of resveratrol on hypopharyngeal carcinoma cell line FADU in vitro.
METHODSHypopharyngeal carcinoma cell line FADU was cultured in in vitro DMEM. Its inhibition on cell proliferation was detected using cytotoxicity test (MTT assay). The cell survival curve was drawn using clone formation to obtain sensitive enhancement ratio (SER). Changes of the cell cycle and cell apoptosis were analyzed using flow cytometry (FCM).
RESULTSResults of MTT showed the inhibition of resveratrol on FADU cells increased along with its concentrations (P < 0.05). Results of clone formation indicated the surviving fraction at 2 Gy (SF2) was 0.717 ± 0.062 in the irradiation group, and 0.426 ± 0.035 in the resveratrol plus irradiation group (with SER ranged 1.684 ± 0.178) with statistical difference (P = 0.007). Results of FCM showed that after radiation of 4 Gy radiation, cells at G2/M phase arrest increased, but cells at G1 decreased. After radiation of resveratrol for 24 h, cells at G1 decreased, but cells at G2/M phase and S phase arrest increased. When 4 Gy radiation combined resveratrol was used, cells at G2/M phase arrest significantly increased, but cells at G1 significantly decreased. The apoptosis rate was 1.94% ± 1.65% in the control group, 4.56% ± 0.92% in the irradiation group, 2.03% ± 1.46% in the resveratrol group, and 23.11% ± 7.22% in the resveratrol plus irradiation group. There was statistical difference between the resveratrol plus irradiation group and the rest 3 groups (P < 0.05).
CONCLUSIONResveratrol could enhance the radiosensitivity of hypopharyngeal carcinoma FADU cells in vitro possibly by inducing cell apoptosis and causing changes in the cell cycle distribution.
Apoptosis ; Carcinoma, Squamous Cell ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; Cell Survival ; Head and Neck Neoplasms ; Humans ; Hypopharyngeal Neoplasms ; drug therapy ; Radiation Tolerance ; Radiation-Sensitizing Agents ; therapeutic use ; Stilbenes ; therapeutic use
5.Effect of dihydroartemisinin combined irradiation on the apoptosis of human lung cancer GLC-82 cells and its mechanism study.
Zhan-jie ZUO ; Song-tao WANG ; Li-xiang JIANG ; Yong-xiang XIN ; Wei LI ; Zi-hao XU ; Jiao-long WANG ; Jian-dong WANG
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(10):1220-1224
OBJECTIVETo study the effect of dihydroartemisinin (DHA) combined irradiation on the apoptosis of human lung cancer GLC-82 cells and to study its mechanism.
METHODSThe growth inhibition rate of GLC-82 cells acted by different concentrations DHA was detected using MTT assay at 24, 48, and 72 h, respectively. Clone forming test was used. With multi-target single-hit model, the radiosensitization effect was assessed by calculating sensitizing enhancement ratio (SER).The effect of DHA combined irradiation on the apoptosis of GLC-82 cell cycle distribution and apoptosis were measured by flow cytometry. The protein expression of p53, p21, Bcl-2, and Bax were detected by Western blot.
RESULTSDifferent concentrations DHA (4, 8, 16, 32, 64, and 128 μg/mL) had cytotoxicity on GLC-82 cells. The IC50 for 24, 48, and 72 h was 38.25,20.58, and 10.36 μg/mL, respectively, in obvious dose- and time-dependent manner. The growth inhibition rate was more significantly increased than that of the blank control group (P < 0.01, P<0.05). DHA had sensitization enhancement effect on GLC-82 cells, with SER of 1.4. DHA combined irradiation could obviously change the structure of GLC-82 cells cell cycle and induce apoptosis (with the apoptosis rate of 21.5%), which was significantly different from that of the blank control group (P < 0.05). Western blot showed the expression of p53 and p21 protein could be increased by DHA combined irradiation, and the expression of Bcl-2 protein down-regulated (P <0.01, P <0. 05).
CONCLUSIONSDHA had stronger cytotoxicity and radiosensitization on GLC-82 cells. Its mechanisms might lie in making the arrest of GLC-82 cells' growth at G0/G1 phase, decreasing the ratio of cells at S phase, restoring the function of p53, decreasing the expression of Bcl-2 protein, and inducing apoptosis in GLC-82 cells.
Apoptosis ; drug effects ; Artemisinins ; pharmacology ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Down-Regulation ; drug effects ; Flow Cytometry ; Humans ; Lung Neoplasms ; metabolism ; Neoplasm Proteins ; metabolism ; Radiation-Sensitizing Agents ; pharmacology ; Tumor Cells, Cultured ; bcl-2-Associated X Protein ; metabolism
6.Enhancement of gastric cancer MKN28 cell line radiosensitivity induced by β-elemene.
Shicai HE ; Junsong LIU ; Zhengliang ZHANG ; Xiangming CHE ; Lin FAN ; Shuai CHANG ; Guanglin QIU ; Wei ZHAO
Chinese Journal of Surgery 2014;52(6):442-445
OBJECTIVETo study radiation-enhancing effects on human gastric cancer MKN28 cell line and underlying mechanisms of β-elemene.
METHODSInhibition of MKN28 cell proliferation at different concentrations of β-elemene was assessed using the methyl thiazolyl blue colorimetric method (MTT method), with calculation of IC50 value and choice of 20% of the IC50 as the experimental drug concentration. Irradiation group and β-elemene+irradiation group were established, and the cell survival fraction (SF) was calculated from flat panel colony forming analysis, and fitted by the 'multitarget click mathematical model'. Draw the survival curve and get the radiobiological parameters D0, Dq, SF2, N and SER. Flow cytometry (FCM) was used to detect changes in the cell cycle and cell apoptosis rates was detected by Annexin-V/PI assay.
RESULTSβ-elemene exerted inhibitory effects on proliferation of gastric cancer MKN28 cells, with an IC50 of 45.6 mg/L and we chose 8 mg/L as the experimental concentration. The cell survival fraction of MKN28 cells with irradiation decreased significantly after treated with β-elemene; D0, Dq decreased, SER = 1.3. After combined treatment of β-elemene+irradiation, the results of FCM showed that cells could be arrested in the G2/M phase and the cell apoptosis increased significantly.
CONCLUSIONSβ-elemene can enhance the radiosensitivity of gastric cancer MKN28 cell line. Mechanistically, β-elemene mainly influences the cell cycle distribution of MKN28 cells by inducing G2/M phase arrest, inhibits the repair of sublethal damage and induces cell apoptosis to enhance the killing effects of radioactive rays.
Apoptosis ; drug effects ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Humans ; Radiation Tolerance ; drug effects ; Sesquiterpenes ; pharmacology ; Stomach Neoplasms ; pathology
7.Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells.
Ju Cheol SON ; Dong Woo KANG ; Kwang Mo YANG ; Kang Yell CHOI ; Tae Gen SON ; Do Sik MIN
Experimental & Molecular Medicine 2013;45(8):e38-
Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the present study, we evaluated the effects of PLD inhibition on cell survival, cell death and DNA damage after exposure to ionizing radiation (IR). Combined IR treatment and PLD inhibition led to an increase in the radiation-induced apoptosis of MDA-MB-231 metastatic breast cancer cells. The selective inhibition of PLD1 and PLD2 led to a significant decrease in the IR-induced colony formation of breast cancer cells. Moreover, PLD inhibition suppressed the radiation-induced activation of extracellular signal-regulated kinase and enhanced the radiation-stimulated phosphorylation of the mitogen-activated protein kinases p38 and c-Jun N-terminal kinase. Furthermore, PLD inhibition, in combination with radiation, was very effective at inducing DNA damage, when compared with radiation alone. Taken together, these results suggest that PLD may be a useful target molecule for the enhancement of the radiotherapy effect.
Breast Neoplasms/*drug therapy/*enzymology/pathology
;
Cell Death/drug effects/radiation effects
;
Cell Line, Tumor
;
Cell Proliferation/drug effects/radiation effects
;
DNA Damage
;
Enzyme Activation/drug effects/radiation effects
;
Enzyme Inhibitors/*pharmacology/*therapeutic use
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Female
;
Humans
;
JNK Mitogen-Activated Protein Kinases/metabolism
;
Phospholipase D/*antagonists & inhibitors/metabolism
;
Radiation Tolerance/*drug effects
;
Radiation, Ionizing
;
p38 Mitogen-Activated Protein Kinases/metabolism
8.Effects of the ultra-filtration extract mixture from Hedysarum Polybotrys on human liver cells HepG2 radiosensitivity.
Wei KOU ; Ying-Dong LI ; Kai LIU ; Xiao-Ying GUO ; Yu-Mei DONG
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(2):220-224
OBJECTIVETo investigate the effects of the ultra-filtration extract mixture from Hedysarum Polybotrys (UEMHP) on the radiosensitivity of HepG2 cells, and to explore its possible mechanisms.
METHODSThe proliferation inhibition effects of UEMHP on HepG2 cells was detected by CCK-8 assay. The colony formation assay was used for the survival fraction (SF) analysis. The distribution of the cell cycle and the apoptosis rate were detected using flow cytometry (FCM). The survivin mRNA expression level was detected using reverse transcription-PCR assay.
RESULTSThe inhibition of UEMHP on HepG2 cells was time-and dose-dependent at the concentration ranging between 5 -50 mg/L (P < 0.05). The parameters of the two curve for SF (P < 0.05) showed statistical difference between the irradiation group and the UEMHP irradiation group. UEMHP could inhibit the clone formation of HepG2 cells and enhance the radiosensitivity of HepG2 cells. The results of FCM showed that UEMHP could induce G2/M phase arrest. The apoptosis rate in the UEMHP irradiation group (21.42% +/- 3.74%) was higher than that in the control group (5.35% +/- 0.41%), the only UEMHP group (10.36% +/- 1.75%), or the irradiation group (10.58% +/- 2.01%) (P < 0.01). RT-PCR showed that the survivin mRNA expression level was lower in the UEMHP irradiation group (0.31 +/- 0.02) than in the control group (0.82 +/- 0.06) and the irradiation group (0.58 +/- 0.04) respectively, showing statistical difference (P < 0.01).
CONCLUSIONUEMHP can enhance the radiosensitivity of HepG2 cells, and its possible mechanisms might be correlated to down-regulating the survivin mRNA expression and promoting the apoptosis.
Apoptosis ; Cell Proliferation ; drug effects ; radiation effects ; Drugs, Chinese Herbal ; pharmacology ; Hep G2 Cells ; Humans ; Inhibitor of Apoptosis Proteins ; metabolism ; Radiation Tolerance ; drug effects
9.Radiosensitizing effect of erlotinib on human lung adenocarcinoma cell line A549.
Chinese Journal of Oncology 2013;35(11):819-823
OBJECTIVETo explore the radiosensitizing effect of erlotinib on human lung adenocarcinoma cell line A549 cells and the related mechanisms.
METHODSThe inhibitory effect of erlotinib on A549 cells was assessed by MTT assay, and its IC50 concentration was calculated. The radiosensitization was evaluated by the method of clone forming assay. Flow cytometry was used to analyze the effect of erlotinib on cell cycle and apoptosis.
RESULTSThe growth of A549 cells was inhibited after the cells were exposed to erlotinib for 48 hours. Moreover, the inhibitory rates increased with the increase of erlotinib concentrations, and IC50 was 19.26 µmol/L. In contrast to the irradiation alone group, the survival rates of the cells in erlotinib plus irradiation groups decreased, and erlotinib enhanced the radiosensitivity of the A549 cells. This effect was further increased as cells were exposed to erlotinib for a longer time. In the irradiation alone group and the two groups exposed to erlotinib for 24 hours and 48 hours before irradiation, D0 values were 3.01 Gy, 2.58 Gy and 2.45 Gy respectively, and Dq values were 2.16 Gy, 1.94 Gy and 1.61 Gy, respectively. In the last two groups, SERD0 values were 1.17 and 1.23, respectively. The flow cytometry analysis showed that erlotinib induced G2/M phase arrest and increased the apoptosis rate in A549 cells. With the increase of exposure time, the effects were more significant.
CONCLUSIONSErlotinib inhibits the A549 cell growth and enhances the radiosensitivity of A549 cells in vitro. The radiosensitizing mechanisms might be related to inhibiting repair of sublethal injury and inducing G2/M phase arrest and apoptosis.
Adenocarcinoma ; pathology ; Apoptosis ; drug effects ; radiation effects ; Cell Cycle ; drug effects ; radiation effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; radiation effects ; Dose-Response Relationship, Drug ; Erlotinib Hydrochloride ; Humans ; Lung Neoplasms ; pathology ; Particle Accelerators ; Quinazolines ; administration & dosage ; pharmacology ; Radiation Tolerance ; drug effects ; Radiation-Sensitizing Agents ; administration & dosage ; pharmacology
10.Effect of nitric oxide on esophageal cancer cell line TE-1.
Guo-gui SUN ; Wan-ning HU ; Jun ZHANG ; Cheng-lin LI ; Cong-rong YANG
Chinese Medical Sciences Journal 2013;28(1):44-49
OBJECTIVETo investigate the radiosensitizing effect of nitric oxide (NO) combined with radiation on esophageal cancer cell line TE-1.
METHODSMethyl thiazolyl tetrazolium (MTT) assay was used to assess the effects of NO and radiation on TE-1 cells regarding inhibition of cell proliferation. Flow cytometry was used to examine the effect of NO and radiation on cell apoptosis and cycle. Reverse transcription polymerase chine reaction and Western blot were used to evaluete the effect of NO on mRNA and protein expression of manganese superoxide dismutase (MnSOD).
RESULTSNO inhibited the proliferation of TE-1 cells while significantly enhancing their radiosensitivity. The application of NO combined with radiation significantly increased the apoptosis rate and G2/M phase proportion of TE-1 cells, with substantial decreases in the MnSOD mRNA and protein expression levels.
CONCLUSIONSNO reduces the MnSOD mRNA and protein expression levels by affecting TE-1 cell cycle, further inhibiting the apoptosis of esophageal cancer cells and enhancing the killing effect of radiation on esophageal cancer cells.
Cell Line, Tumor ; Cell Proliferation ; drug effects ; Esophageal Neoplasms ; drug therapy ; metabolism ; pathology ; Humans ; Nitric Oxide ; therapeutic use ; Radiation Tolerance ; drug effects ; Superoxide Dismutase ; metabolism

Result Analysis
Print
Save
E-mail