1.Medical nucleus image segmentation network based on convolution and attention mechanism.
Peipei ZHI ; Jianzhi DENG ; Zhenxiao ZHONG
Journal of Biomedical Engineering 2022;39(4):730-739
Although deep learning plays an important role in cell nucleus segmentation, it still faces problems such as difficulty in extracting subtle features and blurring of nucleus edges in pathological diagnosis. Aiming at the above problems, a nuclear segmentation network combined with attention mechanism is proposed. The network uses UNet network as the basic structure and the depth separable residual (DSRC) module as the feature encoding to avoid losing the boundary information of the cell nucleus. The feature decoding uses the coordinate attention (CA) to enhance the long-range distance in the feature space and highlights the key information of the nuclear position. Finally, the semantics information fusion (SIF) module integrates the feature of deep and shallow layers to improve the segmentation effect. The experiments were performed on the 2018 data science bowl (DSB2018) dataset and the triple negative breast cancer (TNBC) dataset. For the two datasets, the accuracy of the proposed method was 92.01% and 89.80%, the sensitivity was 90.09% and 91.10%, and the mean intersection over union was 89.01% and 89.12%, respectively. The experimental results show that the proposed method can effectively segment the subtle regions of the nucleus, improve the segmentation accuracy, and provide a reliable basis for clinical diagnosis.
Cell Nucleus/pathology*
;
Image Processing, Computer-Assisted/methods*
2.Nucleus translocation of membrane/cytoplasm proteins in tumor cells.
Ziling ZHU ; Jing TAN ; Hong DENG
Journal of Zhejiang University. Medical sciences 2019;48(3):318-325
Proteins are the physical basis of life and perform all kinds of life activities. Proteins have different orientations and function in different tissues. The same protein, located in different subcellular regions, can perform different and even opposite functions. Both functional and structural proteins are capable of undergoing re-localization which can directly or indirectly participate in signal transduction. Due to abnormal transduction of signals during carcinogenesis, the proteins originally expressed in the cytoplasm are translocated into the nucleus and lead to functional changes in the tumor tissue. The changes of protein localization are affected by many factors, including the interaction between proteins, expression level of proteins and the cleaved intracellular domain of transmembrane protein.
Carcinogenesis
;
pathology
;
Cell Line, Tumor
;
Cell Nucleus
;
metabolism
;
Cytoplasm
;
metabolism
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Membrane Proteins
;
metabolism
;
Protein Domains
;
Protein Transport
;
physiology
;
Signal Transduction
3.Extract of Fructus Schisandrae chinensis Inhibits Neuroinflammation Mediator Production from Microglia via NF-κ B and MAPK Pathways.
Fang-Jiao SONG ; Ke-Wu ZENG ; Jin-Feng CHEN ; Yuan LI ; Xiao-Min SONG ; Peng-Fei TU ; Xue-Mei WANG
Chinese journal of integrative medicine 2019;25(2):131-138
OBJECTIVE:
To investigate the anti-neuroinflammation effect of extract of Fructus Schisandrae chinensis (EFSC) on lipopolysaccharide (LPS)-induced BV-2 cells and the possible involved mechanisms.
METHODS:
Primary cortical neurons were isolated from embryonic (E17-18) cortices of Institute of Cancer Research (ICR) mouse fetuses. Primary microglia and astroglia were isolated from the frontal cortices of newborn ICR mouse. Different cells were cultured in specific culture medium. Cells were divided into 5 groups: control group, LPS group (treated with 1 μg/mL LPS only) and EFSC groups (treated with 1 μg/mL LPS and 100, 200 or 400 mg/mL EFSC, respectively). The effect of EFSC on cells viability was tested by methylthiazolyldiphenyltetrazolium bromide (MTT) colorimetric assay. EFSC-mediated inhibition of LPS-induced production of pro-inflammatory mediators, such as nitrite oxide (NO) and interleukin-6 (IL-6) were quantified and neuron-protection effect against microglia-mediated inflammation injury was tested by hoechst 33258 apoptosis assay and crystal violet staining assay. The expression of pro-inflammatory marker proteins was evaluated by Western blot analysis or immunofluorescence.
RESULTS:
EFSC (200 and 400 mg/mL) reduced NO, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in LPS-induced BV-2 cells (P<0.01 or P<0.05). EFSC (200 and 400 mg/mL) reduced the expression of NO in LPS-induced primary microglia and astroglia (P<0.01). In addition, EFSC alleviated cell apoptosis and inflammation injury in neurons exposed to microglia-conditioned medium (P<0.01). The mechanistic studies indicated EFSC could suppress nuclear factor (NF)-?B phosphorylation and its nuclear translocation (P<0.01). The anti-inflammatory effect of EFSC occurred through suppressed activation of mitogen-activated protein kinase (MAPK) pathway (P<0.01 or P<0.05).
CONCLUSION
EFSC acted as an anti-inflammatory agent in LPS-induced glia cells. These effects might be realized through blocking of NF-κB activity and inhibition of MAPK signaling pathways.
Animals
;
Astrocytes
;
drug effects
;
metabolism
;
pathology
;
Cell Line
;
Cell Nucleus
;
drug effects
;
metabolism
;
Chromatography, High Pressure Liquid
;
Down-Regulation
;
drug effects
;
Inflammation
;
pathology
;
Inflammation Mediators
;
metabolism
;
Lipopolysaccharides
;
MAP Kinase Signaling System
;
drug effects
;
Mice, Inbred ICR
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NF-kappa B
;
metabolism
;
Nervous System
;
pathology
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Schisandra
;
chemistry
;
Spectrometry, Mass, Electrospray Ionization
4.Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF-κB-mediated matrix metalloproteinase-13 expression.
Wei-Guang YU ; Yong SHEN ; Jian-Zhong WU ; Yan-Bing GAO ; Li-Xing ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):330-338
Fibroblast-like synoviocytes (FLS) play a pivotal role in Rheumatoid arthritis (RA) pathogenesis through aggressive migration and invasion. Madecassoside (Madec), a triterpenoid saponin present in Centella asiatica herbs, has a potent anti-inflammatory effect. In the present study, Madec exerted an obvious therapeutic effect in reversing the histological lesions in adjuvant-induced arthritis (AIA) rats. To recognize the anti-rheumatoid potentials of Madec, we further investigated whether Madec interfered with FLS invasion and metalloproteinase (MMP) expression. In cultures of primary FLS isolated from the AIA rats, Madec (10 and 30 μmol·L) was proven to considerably inhibit migration and invasion of FLS induced by interleukin 1β (IL-1β), but exhibiting no obvious effect on cell proliferation. Madec repressed IL-1β-triggered FLS invasion by prohibiting the expression of MMP-13. Additionally, Madec suppressed MMP-13 transcription via inhibiting the MMP-13 promoter-binding activity of NF-κB. Our results further showed that Madec down-regulated the translocation and phosphorylation of NF-κB as demonstrated by Western blotting and immunofluorescence assays. In conclusion, our results suggest that Madec exerts anti-RA activity via inhibiting the NF-κB/MMP-13 pathway.
Animals
;
Antirheumatic Agents
;
chemistry
;
pharmacology
;
therapeutic use
;
Arthritis, Experimental
;
chemically induced
;
drug therapy
;
pathology
;
Cell Movement
;
drug effects
;
Cell Nucleus
;
metabolism
;
Cells, Cultured
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
Matrix Metalloproteinase 13
;
genetics
;
NF-kappa B
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Protein Transport
;
drug effects
;
Rats
;
Signal Transduction
;
drug effects
;
Synoviocytes
;
drug effects
;
metabolism
;
Transcriptional Activation
;
drug effects
;
Triterpenes
;
chemistry
;
pharmacology
;
therapeutic use
5.Tau-Induced Ca/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.
Yu-Ping WEI ; Jin-Wang YE ; Xiong WANG ; Li-Ping ZHU ; Qing-Hua HU ; Qun WANG ; Dan KE ; Qing TIAN ; Jian-Zhi WANG
Neuroscience Bulletin 2018;34(2):261-269
Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca concentration with a simultaneous increase in the phosphorylation of Ca/calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca/CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca/calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca/CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.
Alzheimer Disease
;
metabolism
;
pathology
;
Calcium
;
metabolism
;
Calcium-Calmodulin-Dependent Protein Kinase Type 4
;
metabolism
;
Cell Nucleus
;
metabolism
;
Enzyme Activation
;
physiology
;
HEK293 Cells
;
Humans
;
Neurons
;
metabolism
;
pathology
;
Phosphorylation
;
Signal Transduction
;
physiology
;
tau Proteins
;
metabolism
7.Effect of Total Flavone of Haw Leaves on Nuclear Factor Erythroid-2 Related Factor and Other Related Factors in Nonalcoholic Steatohepatitis Rats.
De-Jun WANG ; Yue-Qin CAI ; Shui-Zhen PAN ; Li-Zong ZHANG ; Yun-Xiang CHEN ; Fang-Ming CHEN ; Ming JIN ; Mao-Xiang YAN ; Xiao-Dong LI ; Zhi-Yun CHEN
Chinese journal of integrative medicine 2018;24(4):265-271
OBJECTIVETo investigate the effect of total flavone of haw leaves (TFHL) on the expression of nuclear factor erythroid-2 related factor (Nrf2) and other related factors in nonalcoholic steatohepatitis (NASH) rats induced by high-fat diet and then to further discuss the mechanism of TFHL's prevention against NASH.
METHODSHigh-fat diet was fed to 40 rats to establish the NASH model. Then model rats were intragastrically administrated with 40, 80, 160 mg/(kg•day) TFHL, respectively. The pathological changes of liver tissues in NASH rats were detected by oil red O and hematoxylin-eosin (HE) stainings. The expression of Nrf2 in rat liver was examined through immunohistochemistry. The level of 8-iso-prostaglandin F2α in serum was detected through enzyme linked immunosorbent assay (ELISA). The mRNA and protein levels of Nrf2 and other related factors in liver tissue were measured by real-time reverse transcriptionpolymerase chain reaction and western blot.
RESULTSLipid deposition, hepatic steatosis, focal necrosis in lobular inflammation and ballooning degeneration were emerged in livers of NASH rats. The 8-iso-prostaglandin F2α in the serum of NASH rats increased significantly compared with the control group (P<0.05). The mRNA of Nrf2, hemeoxyenase1 (HO-1) and the mRNA and protein levels of quinine oxidoreductase (NQO1) in NASH rats liver tissue showed a striking increase, while the mRNA levels of Keap1, r-glutamylcysteine synthethase (rGCS) and glutathione S-transferase (GST) were significantly decreased compared with the control group (P<0.05). After TFHL treatment, 8-iso-prostaglandin F2α level in serum significantly decreased, and Nrf2 mRNA and protein levels in hepatocytes nucleus enhanced compared with the model group (P<0.05 or 0.01). Meanwhile the Keap1 mRNA, the mRNA and protein levels of HO-1, NQO1 antibody, rGCS antibody, GST increased after TFHL treatment (P<0.05 or 0.01).
CONCLUSIONSNrf2 and other related factors were involved in development of NASH, and they also served as an important part in its occurrence. By regulating expression of Nrf2 and other related factors, TFHL may play a role in antioxidative stress and prevention of NASH.
Animals ; Cell Nucleus ; drug effects ; metabolism ; Crataegus ; chemistry ; Dinoprost ; metabolism ; Flavones ; pharmacology ; therapeutic use ; Lipids ; chemistry ; Liver ; drug effects ; metabolism ; pathology ; NF-E2-Related Factor 2 ; genetics ; metabolism ; Non-alcoholic Fatty Liver Disease ; drug therapy ; genetics ; pathology ; Phytotherapy ; Plant Leaves ; chemistry ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley
8.Role of c-Jun N-terminal kinase-mediated FOXO3a nuclear translocation in neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage.
De-Yuan LI ; Jin-Lin WU ; Li-Li LUO ; Li-Na QIAO ; Zhong-Qiang LIU ; Guo-Yan LU ; Yang WANG
Chinese Journal of Contemporary Pediatrics 2017;19(4):458-462
OBJECTIVETo explore the mechanisms of neuroprotective effects of c-Jun N-terminal kinase (JNK)/FOXO3a transcription factor signaling pathway inhibition on hypoxic-ischemic neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage (HIBD).
METHODSSixty-four 7-day-old Sprague-Dawley rats were divided into four groups: hypoxia-ischemia (HI), sham-operated, JNK specific inhibitor AS601245-treated, and DMSO vehicle. Rats' cerebral cortexes were collected at 24 hours after HI. Western blot was used to detect the protein expression of JNK, p-JNK, FOXO3a, nuclear and cytoplasmic FOXO3a, Bim, and CC3. TUNEL staining was used to detect the apoptotic cells.
RESULTSCompared with the sham-operated group, p-JNK protein increased (P<0.01), nuclear protein of FOXO3a increased (P<0.01), cytoplasmic protein decreased (P<0.01), and pro-apoptotic proteins Bim and CC3 increased 24 hours after HI (P<0.01). Compared with the HI and DMSO vehicle groups, p-JNK protein was reduced (P<0.01), nuclear protein of FOXO3a was also reduced (P<0.01), cytoplasmic protein increased (P<0.01), and Bim and CC3 proteins decreased (P<0.01) in the AS601245-treated group 24 hours after HI. TUNEL positive cells were reduced in the AS601245-treated rats compared with the HI and DMSO vehicle groups 24 hours after HI (P<0.01).
CONCLUSIONSJNK activity increases in the neonatal rat brain with HI damage. JNK activity inhibition can inhibit FOXO3a translocation from cytoplasm to nucleus and downregulate the levels of pro-apoptotic proteins Bim and CC3, leading to the reduction of neuronal apoptosis.
Active Transport, Cell Nucleus ; Animals ; Animals, Newborn ; Apoptosis ; Cell Nucleus ; metabolism ; Female ; Forkhead Box Protein O3 ; metabolism ; Hypoxia-Ischemia, Brain ; pathology ; JNK Mitogen-Activated Protein Kinases ; physiology ; Male ; Neurons ; pathology ; Rats ; Rats, Sprague-Dawley
9.The association of Hsp90 expression induced by aspirin with anti-stress damage in chicken myocardial cells.
Xiao Hui ZHANG ; Huai Sen ZHU ; Zhuang QIAN ; Shu TANG ; Di WU ; Nicole KEMPER ; Joerg HARTUNG ; En Dong BAO
Journal of Veterinary Science 2016;17(1):35-44
The protective effect of aspirin during exposure to heat stress in broiler chickens was investigated. We assayed pathological damage, expression and distribution of Hsp90 protein and hsp90 mRNA expression in chicken heart tissues after oral administration of aspirin following exposure to high temperature for varying times. Heat stress induced increases in plasma aspartate aminotransferase, creatine kinase and lactate dehydrogenase activities while causing severe heart damage, which was characterized by granular and vacuolar degeneration, nuclear shrinkage and even myocardium fragmentation in cardiac muscle fibers. After aspirin administration, myocardial cells showed fewer pathological lesions than broilers treated with heat alone. A high positive Hsp90 signal was always detected in the nuclei of myocardial cells from broilers treated with aspirin, while in myocardial cells treated with heat alone, Hsp90 in the nuclei decreased, as did that in the cytoplasm. Aspirin induced rapid and significant synthesis of Hsp90 before and at the initial phase of heat stress, and significant expression of hsp90 mRNA was stimulated throughout the experiment when compared with cells exposed to heat stress alone. Thus, specific pre-induction of Hsp90 in cardiovascular tissue was useful for resisting heat stress damage because it produced stable damage-related enzymes and fewer pathologic changes.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/pharmacology
;
Aspirin/*pharmacology
;
Cell Nucleus/genetics
;
Chickens
;
Gene Expression Regulation/*drug effects
;
HSP90 Heat-Shock Proteins/*genetics
;
Hot Temperature
;
Myocytes, Cardiac/*drug effects/enzymology/pathology
;
Stress, Physiological/*drug effects
10.Hydroxysafflor yellow A attenuate lipopolysaccharide-induced endothelium inflammatory injury.
Ming JIN ; Chun-Yan SUN ; Bao-Xia ZANG
Chinese journal of integrative medicine 2016;22(1):36-41
OBJECTIVEThis study observed attenuating effect of hydroxysafflor yellow A (HSYA), an effective ingredient of aqueous extract of Carthamus tinctorius L, on lipopolysaccharide (LPS)-induced endothelium inflammatory injury.
METHODSEahy926 human endothelium cell (EC) line was used; thiazolyl blue tetrazolium bromide (MTT) test was assayed to observe the viability of EC; Luciferase reporter gene assay was applied to measure nuclear factor-κB (NF-κB) p65 subunit nuclear binding activity in EC; Western blot technology was used to monitor mitogen activated protein kinase (MAPKs) and NF-κB activation. Reverse transcription polymerase chain reaction (RT-PCR) method was applied to observe intercellular cell adhesion molecule-1 (ICAM-1) and E-selectin mRNA level; EC surface ICAM-1 expression was measured with flow cytometry and leukocyte adhesion to EC was assayed with Rose Bengal spectrophotometry technology.
RESULTSHSYA protected EC viability against LPS-induced injury (P <0.05). LPS-induced NF-κB p65 subunit DNA binding (P <0.01) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα) phosphorylation was inhibited by HSYA. HSYA attenuated LPS triggered ICAM-1 and E-selectin mRNA levels elevation and phosphorylation of p38 MAPK or c-Jun N-terminal kinase MAPK. HSYA also inhibited LPS-induced cell surface ICAM-1 protein expression P <0.01) and leukocyte adhesion to EC (P <0.05).
CONCLUSIONHSYA is effective to protect LPS-induced high expression of endothelium adhesive molecule and inflammatory signal transduction.
Cell Adhesion ; drug effects ; Cell Nucleus ; drug effects ; metabolism ; Cell Survival ; drug effects ; Chalcone ; analogs & derivatives ; chemistry ; pharmacology ; therapeutic use ; E-Selectin ; genetics ; metabolism ; Endothelium, Vascular ; drug effects ; pathology ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; pathology ; Humans ; I-kappa B Proteins ; metabolism ; Inflammation ; drug therapy ; pathology ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Leukocytes ; cytology ; drug effects ; Lipopolysaccharides ; MAP Kinase Signaling System ; drug effects ; NF-KappaB Inhibitor alpha ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; Protein Binding ; drug effects ; Quinones ; chemistry ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism

Result Analysis
Print
Save
E-mail