1.Effectiveness of omega-3 polyunsaturated fatty acids against microbial pathogens.
Warren CHANDA ; Thomson P JOSEPH ; Xue-Fang GUO ; Wen-Dong WANG ; Min LIU ; Miza S VUAI ; Arshad A PADHIAR ; Min-Tao ZHONG
Journal of Zhejiang University. Science. B 2018;19(4):253-262
Microorganisms provide both beneficial and harmful effects to human beings. Beneficial effects come from the symbiotic relationship that exists between humans and microbiota, but then several human illnesses have turned some friendly microbes into opportunistic pathogens, causing several microbial-related diseases. Various efforts have been made to create and utilize antimicrobial agents in the treatment and prevention of these infections, but such efforts have been hampered by the emergence of antimicrobial resistance. Despite extensive studies on drug discovery to alleviate this problem, issues with the toxicity and tolerance of certain compounds and continuous microbial evolution have forced researchers to focus on screening various phytochemical dietary compounds for antimicrobial activity. Linolenic acid and its derivatives (eicosapentaenoic acid and docosahexaenoic acid) are omega-3 fatty acids that have been studied due to their role in human health, being important for the brain, the eye, the cardiovascular system, and general human growth. However, their utilization as antimicrobial agents has not been widely appreciated, perhaps due to a lack of understanding of antimicrobial mechanisms, toxicity, and route of administration. Therefore, this review focuses on the efficacy, mechanism, and toxicity of omega-3 fatty acids as alternative therapeutic agents for treating and preventing diseases associated with pathogenic microorganisms.
Animals
;
Animals, Genetically Modified
;
Anti-Infective Agents/chemistry*
;
Antioxidants/chemistry*
;
Bacterial Infections/microbiology*
;
Cell Membrane/drug effects*
;
Clinical Trials as Topic
;
Docosahexaenoic Acids/chemistry*
;
Drug Resistance, Bacterial
;
Eicosapentaenoic Acid/chemistry*
;
Fatty Acids, Omega-3/chemistry*
;
Fishes
;
Humans
;
Lipids/chemistry*
;
Mice
;
Microbiota
;
Rats
;
alpha-Linolenic Acid/chemistry*
2.Identification of Outer Membrane Vesicles Derived from Orientia tsutsugamushi.
Sun Myoung LEE ; Hea Yoon KWON ; Jae Hyong IM ; Ji Hyeon BAEK ; Jae Seung KANG ; Jin Soo LEE
Journal of Korean Medical Science 2015;30(7):866-870
Orientia tsutsugamushi, a causative pathogen of Scrub typhus, is a gram-negative intracellular bacterium. Outer membrane vesicles (OMVs) are produced from the membrane of bacteria and play many roles related to the survival of the pathogen. However, there have been no reports confirming whether O. tsutsugamushi indeed produce OMVs. O. tsutsugamushi boryong was cultured in ECV-304 cells for the purification of OMVs. Western blot analysis and immunoenrichment using anti-O. tsutsugamushi monoclonal antibody and electron microscopy were employed for identification and characterization of OMVs. We confirm the presence of OMVs derived from O. tsutsugamushi, and also found that those OMVs contain a major surface antigen of 56-kDa protein and variant immunogenic antigens.
Antibodies, Monoclonal/*immunology
;
Antigens, Bacterial/*immunology
;
Antigens, Surface/*immunology
;
Cell Line
;
Cell Membrane/immunology
;
Humans
;
Microscopy, Electron
;
Orientia tsutsugamushi/*immunology/metabolism
;
Scrub Typhus/diagnosis/microbiology
;
Secretory Vesicles/*immunology
3.Pathogenesis of uropathogenic Escherichia coli: role of outer membrane protein T and the mechanism.
Yarong QU ; Xiaolong HE ; Qin WANG ; Like ZHANG ; Min LONG ; Jun LUO ; Wenbing ZHANG ; Hong CAO
Journal of Southern Medical University 2014;34(2):174-179
OBJECTIVETo study the role of outer membrane protein T (OmpT) in the pathogenesis of uropathogenic Escherichia.coli.
METHODSIn cultured human bladder epithelial cell line 5637, we examined the adhesion ability of wild-type (CFT073), ompT gene knockout (COTD), and revertant (pST) strains of E.coli to the cells and the extracellular matrix (ECM). The expressions of the adhesion gene iha and virulence gene iroN were detected by real-time PCR. Murine models of urinary tract infection with the 3 strains were established to evaluate the bacterial burden of the bladder and kidney tissue and bacterial counts in blood. We also detected the expressions of interleukin-6 (IL-6) and IL-8 in the bladder and kidney tissues of the mice.
RESULTThe COTD strain showed a significantly lower cell adhesion rate than CFT073 strain [(4.62∓0.39)% vs (8.81∓1.13)%, P<0.05] with also a lower ECM-adhesion rate [(4.95∓0.59)% vs (8.85∓0.79)%, P<0.05]. The mRNA expressions of iha and iroN in CFT073 strain were 2.1 and 3.8 times that of COTD strain. In the mouse model, the mean bacterial load of CFT073 strain in the bladder tissue was 6.36∓0.06, significantly greater than that of COTD (6.01∓0.07) and revertant (6.29∓0.06) strains (P<0.05); the bacterial load of CFT073 strain in the kidney tissue was also significantly higher than that of COTD strain (6.25∓0.05 vs 5.87∓0.06, P<0.05). In mice infected with the wild-type, knockout, and revertant strains, the detection rates of IL-6, which were identical to those of IL-8, in the inflammatory bladder and kidney tissues were 60%, 12.5%, and 50%, respectively.
CONCLUSIONSOmpT may regulate the expression of the adhesion gene iha and the transferrin gene iroN to affect the adhesion of uropathogenic E.coli to host cells.
Animals ; Bacterial Adhesion ; Bacterial Load ; Bacterial Outer Membrane Proteins ; metabolism ; Cell Line, Tumor ; Escherichia coli Infections ; pathology ; Escherichia coli Proteins ; metabolism ; Gene Knockout Techniques ; Humans ; Inflammation ; Interleukin-6 ; metabolism ; Interleukin-8 ; metabolism ; Kidney ; microbiology ; Mice ; Peptide Hydrolases ; metabolism ; Receptors, Cell Surface ; metabolism ; Urinary Bladder ; microbiology ; Urinary Tract Infections ; microbiology ; pathology ; Uropathogenic Escherichia coli ; pathogenicity
4.Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection.
Hyun-Shik KIM ; Seok Woo CHANG ; Seung-Ho BAEK ; Seung Hyun HAN ; Yoon LEE ; Qiang ZHU ; Kee-Yeon KUM
International Journal of Oral Science 2013;5(1):26-31
A previous study demonstrated that alexidine has greater affinity for the major virulence factors of bacteria than chlorhexidine. The aim of this study was to compare the antimicrobial activity of 1% alexidine with that of 2% chlorhexidine using Enterococcus faecalis-infected dentin blocks. Sixty bovine dentin blocks were prepared and randomly divided into six groups of 10 each. E. faecalis was inoculated on 60 dentin blocks using the Luppens apparatus for 24 h and then the dentin blocks were soaked in 2% chlorhexidine or 1% alexidine solutions for 5 and 10 min, respectively. Sterile saline was used as a control. The antimicrobial efficacy was assessed by counting the number of bacteria adhering to the dentin surface and observing the degradation of bacterial shape or membrane rupture under a scanning electron microscope. Significantly fewer bacteria were observed in the 2% chlorhexidine- or 1% alexidine-soaked groups than in the control group (P<0.05). However, there was no significant difference in the number of bacteria adhering to the dentinal surface between the two experimental groups or between the two soaking time groups (P>0.05). Ruptured or antiseptic-attached bacteria were more frequently observed in the 10-min-soaked chlorhexidine and alexidine groups than in the 5-min-soaked chlorhexidine and alexidine groups. In conclusion, 10-min soaking with 1% alexidine or 2% chlorhexidine can be effective against E. faecalis infection.
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Bacterial Adhesion
;
drug effects
;
Bacterial Load
;
drug effects
;
Biguanides
;
pharmacology
;
Cattle
;
Cell Membrane
;
drug effects
;
Chlorhexidine
;
pharmacology
;
Dentin
;
microbiology
;
Enterococcus faecalis
;
drug effects
;
Microscopy, Electron, Scanning
;
Random Allocation
;
Time Factors
5.Expression changes of major outer membrane protein antigens in Leptospira interrogans during infection and its mechanism.
Linli ZHENG ; Yumei GE ; Weilin HU ; Jie YAN
Journal of Zhejiang University. Medical sciences 2013;42(2):156-163
OBJECTIVETo determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism.
METHODSOmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays.
RESULTSThe bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P <0.01), whereas mRNA levels of leptospiral groEL, mce, loa22 and ligB genes were rapidly but transiently up-regulated (P<0.01). The treatment with closantel and HK-peptide antiserum partly reversed the infection-based down-regulated mRNA levels of lipL21 and lipL48 genes (P <0.01). Moreover, closantel caused a decrease of the infection-based up-regulated mRNA levels of groEL, mce, loa22 and ligB genes (P <0.01).
CONCLUSIONExpression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.
Antigens, Bacterial ; genetics ; metabolism ; Bacterial Outer Membrane Proteins ; genetics ; metabolism ; Cell Line ; Chaperonin 60 ; genetics ; metabolism ; Humans ; Leptospira interrogans ; genetics ; immunology ; pathogenicity ; Lipoproteins ; genetics ; metabolism ; Macrophages ; microbiology
6.Ureaplasma urealyticum infection affects sperm plasma membrane integrity in infertile men.
Xin-Yi XIA ; Li-Mei AN ; Wei-Wei LI ; Ke LI ; Yong SHAO ; Xue-Jun SHANG ; Bing YAO ; Ying-Xia CUI ; Yu-Feng HUANG
National Journal of Andrology 2011;17(12):1069-1072
OBJECTIVETo determine the impact of Ureaplasma urealyticum (Uu) infection on the integrity of sperm plasma membrane in infertile males.
METHODSSixty-three semen samples were divided into a Uu infection group (n = 32) and a normal control group (n = 31). Conventional semen analyses were performed by computer-assisted semen analysis (CASA) and Uu detected by the culture method. The semen samples were washed with PBS and dyed by SYBR-14/PI double fluorescent staining, followed by detection of the integrity of sperm plasma membrane by flow cytometry. The percentage of the sperm with intact plasma membrane was indicated as the percentage of sperm emitting green fluorescence (SYBR-14+/PI-%).
RESULTSThe Uu infection group showed a significantly decreased integrity of sperm plasma membrane ([45.14 +/- 10.69]%) and reduced percentage of grade a + b sperm ([23.29 +/- 8.81]%) as compared with the normal control group ([72.68 +/- 9.91]% and [46.32 +/- 9.54]%) (P < 0.01). But there were no significant differences in the semen volume, pH value, and sperm concentration between the two groups (P > 0.05).
CONCLUSIONUu infection decreases the integrity of sperm plasma membrane, which might be an important factor of male infertility.
Adult ; Case-Control Studies ; Cell Membrane ; pathology ; Flow Cytometry ; Humans ; Infertility, Male ; microbiology ; pathology ; physiopathology ; Male ; Organic Chemicals ; Semen Analysis ; methods ; Spermatozoa ; metabolism ; pathology ; Ureaplasma Infections ; pathology ; physiopathology ; Ureaplasma urealyticum ; Young Adult
7.Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms.
Jae-Gyu JEON ; Santosh PANDIT ; Jin XIAO ; Stacy GREGOIRE ; Megan L FALSETTA ; Marlise I KLEIN ; Hyun KOO
International Journal of Oral Science 2011;3(2):98-106
Trans-trans farnesol (tt-farnesol) is a bioactive sesquiterpene alcohol commonly found in propolis (a beehive product) and citrus fruits, which disrupts the ability of Streptococcus mutans (S. mutans) to form virulent biofilms. In this study, we investigated whether tt-farnesol affects cell-membrane function, acid production and/or acid tolerance by planktonic cells and biofilms of S. mutans UA159. Furthermore, the influence of the agent on S. mutans gene expression and ability to form biofilms in the presence of other oral bacteria (Streptococcus oralis (S. oralis) 35037 and Actinomyces naeslundii (A. naeslundii) 12104) was also examined. In general, tt-farnesol (1 mmol x L(-1)) significantly increased the membrane proton permeability and reduced glycolytic activity of S. mutans in the planktonic state and in biofilms (P < 0.05). Moreover, topical applications of 1 mmol x L(-1) tt-farnesol twice daily (1 min exposure/treatment) reduced biomass accumulation and prevented ecological shifts towards S. mutans dominance within mixed-species biofilms after introduction of 1% sucrose. S. oralis (a non-cariogenic organism) became the major species after treatments with tt-farnesol, whereas vehicle-treated biofilms contained mostly S. mutans (>90% of total bacterial population). However, the agent did not affect significantly the expression of S. mutans genes involved in acidogenicity, acid tolerance or polysaccharide synthesis in the treated biofilms. Our data indicate that tt-farnesol may affect the competitiveness of S. mutans in a mixed-species environment by primarily disrupting the membrane function and physiology of this bacterium. This naturally occurring terpenoid could be a potentially useful adjunctive agent to the current anti-biofilm/anti-caries chemotherapeutic strategies.
Actinomyces
;
physiology
;
Biofilms
;
drug effects
;
Cell Membrane Permeability
;
drug effects
;
Colony Count, Microbial
;
Durapatite
;
Farnesol
;
pharmacology
;
Gene Expression Regulation, Bacterial
;
drug effects
;
Glycolysis
;
Humans
;
Hydrogen-Ion Concentration
;
Microbial Viability
;
drug effects
;
Plankton
;
drug effects
;
Saliva
;
microbiology
;
Streptococcus mutans
;
drug effects
;
genetics
;
physiology
;
Streptococcus oralis
;
physiology
8.Biotin biosynthesis in Mycobacterium tuberculosis: physiology, biochemistry and molecular intervention.
Wanisa SALAEMAE ; Al AZHAR ; Grant W BOOKER ; Steven W POLYAK
Protein & Cell 2011;2(9):691-695
Biotin is an important micronutrient that serves as an essential enzyme cofactor. Bacteria obtain biotin either through de novo synthesis or by active uptake from exogenous sources. Mycobacteria are unusual amongst bacteria in that their primary source of biotin is through de novo synthesis. Here we review the importance of biotin biosynthesis in the lifecycle of Mycobacteria. Genetic screens designed to identify key metabolic processes have highlighted a role for the biotin biosynthesis in bacilli growth, infection and survival during the latency phase. These studies help to establish the biotin biosynthetic pathway as a potential drug target for new anti-tuberculosis agents.
Biotin
;
biosynthesis
;
Carbon-Carbon Ligases
;
metabolism
;
Carrier Proteins
;
metabolism
;
Cell Membrane
;
metabolism
;
Coenzymes
;
metabolism
;
Fatty Acids
;
biosynthesis
;
Genes, Bacterial
;
Genome, Bacterial
;
Metabolic Networks and Pathways
;
Molecular Structure
;
Mycobacterium Infections
;
microbiology
;
Mycobacterium tuberculosis
;
genetics
;
metabolism
;
pathogenicity
;
physiology
;
Virulence
9.Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG.
Maria V CARROLL ; Robert B SIM ; Fabiana BIGI ; Anne JÄKEL ; Robin ANTROBUS ; Daniel A MITCHELL
Protein & Cell 2010;1(9):859-870
Dendritic-cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN; CD209) has an important role in mediating adherence of Mycobacteria species, including M. tuberculosis and M. bovis BCG to human dendritic cells and macrophages, in which these bacteria can survive intracellularly. DC-SIGN is a C-type lectin, and interactions with mycobacterial cells are believed to occur via mannosylated structures on the mycobacterial surface. Recent studies suggest more varied modes of binding to multiple mycobacterial ligands. Here we identify, by affinity chromatography and mass-spectrometry, four novel ligands of M. bovis BCG that bind to DC-SIGN. The novel ligands are chaperone protein DnaK, 60 kDa chaperonin-1 (Cpn60.1), glyceraldehyde-3 phosphate dehydrogenase (GAPDH) and lipoprotein lprG. Other published work strongly suggests that these are on the cell surface. Of these ligands, lprG appears to bind DC-SIGN via typical proteinglycan interactions, but DnaK and Cpn60.1 binding do not show evidence of carbohydrate-dependent interactions. LprG was also identified as a ligand for DC-SIGNR (L-SIGN; CD299) and the M. tuberculosis orthologue of lprG has been found previously to interact with human toll-like receptor 2. Collectively, these findings offer new targets for combating mycobacterial adhesion and within-host survival, and reinforce the role of DCSIGN as an important host ligand in mycobacterial infection.
Amino Acid Sequence
;
Bacterial Adhesion
;
physiology
;
Bacterial Proteins
;
genetics
;
metabolism
;
Cell Adhesion Molecules
;
genetics
;
metabolism
;
Chromatography, Affinity
;
Dendritic Cells
;
metabolism
;
microbiology
;
Host-Pathogen Interactions
;
genetics
;
physiology
;
Humans
;
In Vitro Techniques
;
Lectins, C-Type
;
genetics
;
metabolism
;
Ligands
;
Macrophages
;
metabolism
;
microbiology
;
Mass Spectrometry
;
Membrane Proteins
;
genetics
;
metabolism
;
Models, Biological
;
Molecular Chaperones
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Mycobacterium bovis
;
genetics
;
metabolism
;
Mycobacterium tuberculosis
;
genetics
;
metabolism
;
pathogenicity
;
Pulmonary Surfactant-Associated Protein A
;
metabolism
;
Receptors, Cell Surface
;
genetics
;
metabolism
10.Protective effect of compound tongfu granule on intestinal mucosal barrier in patients with cirrhosis of decompensation stage.
Chun-yan JIANG ; Bao-en WANG ; Dan CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2008;28(9):784-787
OBJECTIVETo explore the intestinal mucosal barrier protective effect of herbal medicine Compound Tongfu Granule (CTG) in patients with liver cirrhosis of decompensation stage.
METHODSFifty patients enrolled were randomly assigned to the control group (26 cases) and the CTG group (24 cases), and 30 healthy adults were set up as normal control. After 2-week treatment, the intestinal permeability (IP, represented by urinary lactulose/mannitol excretion rate), plasma endotoxin (EDT) level, and change of enteric bacteria (EB) in patients were observed before and after treatment, and compared with those in the normal control.
RESULTSBefore treatment, cirrhotic patients showed significantly higher levels of IP, EDT, and intestinal bacilli, but a lower amount of enteric bifidobacteria as compared with those the normal control. After 2-week treatment, levels of EDT and urinary excretion rate of lactulose in the CTG group were lowered more significantly than those in the control group (P < 0.05), while the amount of bifidobacteria in the CTG group increased accompanied with intestinal bacilli significantly lowered to near the levels in the normal control (P < 0.05, P < 0.01).
CONCLUSIONCTG can improve the intestinal barrier function, correct the intestinal bacteria disturbance, and significantly reduce the entero-derived endotoxemia in cirrhotic patients of decompensation stage.
Adult ; Aged ; Aged, 80 and over ; Bifidobacterium ; isolation & purification ; metabolism ; Cell Membrane Permeability ; drug effects ; Drugs, Chinese Herbal ; therapeutic use ; Endotoxins ; metabolism ; Humans ; Intestinal Mucosa ; drug effects ; metabolism ; microbiology ; pathology ; Lactulose ; metabolism ; Liver Cirrhosis ; drug therapy ; metabolism ; microbiology ; pathology ; Male ; Middle Aged ; Treatment Outcome

Result Analysis
Print
Save
E-mail