1.Expression of GPNMB in renal eosinophilic tumors and its value in differential diagnosis.
Ya WANG ; Meng Yue HOU ; Yao FU ; Kui MENG ; Hong Yan WU ; Jin CHEN ; Yue Mei XU ; Jiong SHI ; Xiang Shan FAN
Chinese Journal of Pathology 2023;52(4):358-363
Objective: To investigate the expression of glycoprotein non metastatic melanoma protein B (GPNMB) in renal eosinophilic tumors and to compare the value of GPNMB with CK20, CK7 and CD117 in the differential diagnosis of renal eosinophilic tumors. Methods: Traditional renal tumor eosinophil subtypes, including 22 cases of renal clear cell carcinoma eosinophil subtype (e-ccRCC), 19 cases of renal papillary cell carcinoma eosinophil subtype (e-papRCC), 17 cases of renal chromophobe cell carcinoma eosinophil subtype (e-chRCC), 12 cases of renal oncocytoma (RO) and emerging renal tumor types with eosinophil characteristics [3 cases of eosinophilic solid cystic renal cell carcinoma (ESC RCC), 3 cases of renal low-grade eosinophil tumor (LOT), 4 cases of fumarate hydratase-deficient renal cell carcinoma (FH-dRCC) and 5 cases of renal epithelioid angiomyolipoma (E-AML)], were collected at the Affiliated Drum Tower Hospital of Nanjing University Medical School from January 2017 to March 2022. The expression of GPNMB, CK20, CK7 and CD117 was detected by immunohistochemistry and statistically analyzed. Results: GPNMB was expressed in all emerging renal tumor types with eosinophil characteristics (ESC RCC, LOT, FH-dRCC) and E-AML, while the expression rates in traditional renal eosinophil subtypes e-papRCC, e-chRCC, e-ccRCC and RO were very low or zero (1/19, 1/17, 0/22 and 0/12, respectively); the expression rate of CK7 in LOT (3/3), e-chRCC (15/17), e-ccRCC (4/22), e-papRCC (2/19), ESC RCC (0/3), RO (4/12), E-AML(1/5), and FH-dRCC (2/4) variedly; the expression of CK20 was different in ESC RCC (3/3), LOT(3/3), e-chRCC(1/17), RO(9/12), e-papRCC(4/19), FH-dRCC(1/4), e-ccRCC(0/22) and E-AML(0/5), and so did that of CD117 in e-ccRCC(2/22), e-papRCC(1/19), e-chRCC(16/17), RO(10/12), ESC RCC(0/3), LOT(1/3), E-AML(2/5) and FH-dRCC(1/4). GPNMB had 100% sensitivity and 97.1% specificity in distinguishing E-AML and emerging renal tumor types (such as ESC RCC, LOT, FH-dRCC) from traditional renal tumor types (such as e-ccRCC, e-papRCC, e-chRCC, RO),respectively. Compared with CK7, CK20 and CD117 antibodies, GPNMB was more effective in the differential diagnosis (P<0.05). Conclusion: As a new renal tumor marker, GPNMB can effectively distinguish E-AML and emerging renal tumor types with eosinophil characteristics such as ESC RCC, LOT, FH-dRCC from traditional renal tumor eosinophil subtypes such as e-ccRCC, e-papRCC, e-chRCC and RO, which is helpful for the differential diagnosis of renal eosinophilic tumors.
Humans
;
Kidney Neoplasms/pathology*
;
Carcinoma, Renal Cell/pathology*
;
Diagnosis, Differential
;
Angiomyolipoma/diagnosis*
;
Biomarkers, Tumor/metabolism*
;
Leukemia, Myeloid, Acute/diagnosis*
;
Membrane Glycoproteins
2.LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma.
Yuantong LIU ; Shujin LI ; Shuo WANG ; Qichao YANG ; Zhizhong WU ; Mengjie ZHANG ; Lei CHEN ; Zhijun SUN
International Journal of Oral Science 2023;15(1):24-24
Cancer stem cell-like cells (CSCs) play an integral role in the heterogeneity, metastasis, and treatment resistance of head and neck squamous cell carcinoma (HNSCC) due to their high tumor initiation capacity and plasticity. Here, we identified a candidate gene named LIMP-2 as a novel therapeutic target regulating HNSCC progression and CSC properties. The high expression of LIMP-2 in HNSCC patients suggested a poor prognosis and potential immunotherapy resistance. Functionally, LIMP-2 can facilitate autolysosome formation to promote autophagic flux. LIMP-2 knockdown inhibits autophagic flux and reduces the tumorigenic ability of HNSCC. Further mechanistic studies suggest that enhanced autophagy helps HNSCC maintain stemness and promotes degradation of GSK3β, which in turn facilitates nuclear translocation of β-catenin and transcription of downstream target genes. In conclusion, this study reveals LIMP-2 as a novel prospective therapeutic target for HNSCC and provides evidence for a link between autophagy, CSC, and immunotherapy resistance.
Humans
;
Autophagy
;
Carcinoma, Squamous Cell/pathology*
;
Cell Line, Tumor
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Head and Neck Neoplasms/pathology*
;
Neoplastic Stem Cells/pathology*
;
Squamous Cell Carcinoma of Head and Neck/pathology*
;
Lysosome-Associated Membrane Glycoproteins
3.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
4.Nucleus translocation of membrane/cytoplasm proteins in tumor cells.
Ziling ZHU ; Jing TAN ; Hong DENG
Journal of Zhejiang University. Medical sciences 2019;48(3):318-325
Proteins are the physical basis of life and perform all kinds of life activities. Proteins have different orientations and function in different tissues. The same protein, located in different subcellular regions, can perform different and even opposite functions. Both functional and structural proteins are capable of undergoing re-localization which can directly or indirectly participate in signal transduction. Due to abnormal transduction of signals during carcinogenesis, the proteins originally expressed in the cytoplasm are translocated into the nucleus and lead to functional changes in the tumor tissue. The changes of protein localization are affected by many factors, including the interaction between proteins, expression level of proteins and the cleaved intracellular domain of transmembrane protein.
Carcinogenesis
;
pathology
;
Cell Line, Tumor
;
Cell Nucleus
;
metabolism
;
Cytoplasm
;
metabolism
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Membrane Proteins
;
metabolism
;
Protein Domains
;
Protein Transport
;
physiology
;
Signal Transduction
5.The effects of Sestrin2 on apoptosis of heat-exposed lung epithelial cells and its mechanism.
Xiu-Jie GAO ; Shang WANG ; Wei-Li LIU ; Kun WANG ; Zhao-Li CHEN ; Xin-Xing WANG
Chinese Journal of Applied Physiology 2019;35(4):289-292
OBJECTIVE:
To investigate the protective effects of Sestrin2 protein on lung epithelial Beas-2B cells in the heat-exposure environment and its mechanism.
METHODS:
Lung epithelial Beas-2B cells were cultured at 37℃, 39℃, 40℃ and 41℃ respectively. Cells were harvested at different times (0, 3, 6 and 12 h) after pancreatin digestion. The expressions of Sestrin2, superoxide dismutase(SOD), reactive oxygen species(ROS), cell mitochondrial membrane potential and apoptosis rate of cells were detected by Western blot, fluorescence spectrophotometer and flow cytometry, respectively. Gene expression sequence was cloned into high expression plasmid pcDNA3.1. Beas-2B cells were transfected by Lipfectamine 2000 to construct Sestrin2 and SOD high expression cells. The changes of mitochondrial membrane potential and cell apoptosis were observed in the Sestrin2 and SOD high expression cells.
RESULTS:
With the increase of temperature, the expression level of Sestrin2 protein in heat treatment group was decreased compared with the control group. When Beas-2B cells were exposed to 41℃, the ROS level was increased, mitochondrial membrane potential was decreased significantly and apoptosis rate was increased at different time points. After high expression of Sestrin2 and SOD in the Beas-2B cells, the expression level of ROS was decreased and the change tendency of mitochondrial membrane potential was decreased, and the apoptosis rate was reduced at 41℃ exposure.
CONCLUSION
Sestrin2 can alleviate the apoptosis of lung epithelial cells induced by heat exposure through mitochondrial membrane potential and SOD, which has protective effect on lung epithelial Beas-2B cells.
Apoptosis
;
Cell Line
;
Epithelial Cells
;
pathology
;
Hot Temperature
;
Humans
;
Membrane Potential, Mitochondrial
;
Nuclear Proteins
;
genetics
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Transfection
6.Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C.
Chaohua PENG ; Gaochun ZHU ; Xiangqian LIU ; He LI
Neuroscience Bulletin 2018;34(5):747-758
Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.
Aging
;
metabolism
;
Animals
;
Brain
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Gene Expression
;
physiology
;
Huntingtin Protein
;
genetics
;
metabolism
;
Membrane Glycoproteins
;
metabolism
;
Mice
;
Mice, Transgenic
;
Mutation
;
Nerve Tissue Proteins
;
metabolism
;
RNA, Messenger
;
metabolism
;
Transcription, Genetic
;
physiology
7.Inhibiting HSP70 expression enhances cisplatin sensitivity of cervical cancer cells.
Jian LIU ; Jing LIU ; Sheng-Ze LI ; Ying-Ao ZHENG ; Su-Yang GUO ; Xiu WANG
Journal of Southern Medical University 2016;37(4):475-481
OBJECTIVETo investigate the relationship between sensitivity to cisplatin (DDP) and the expression of HSP70 in cervical cancer cells in vitro.
METHODSCervical cancer Hela229 cells treated with different concentrations of DDP and the HSP70 inhibitor (PFT-µ) were examined for cell viability using MTT assay and colony forming ability. The cell apoptosis was analyzed by flow cytometry with propidium iodide staining and DAPI staining, and JC-1 staining was used to determine mitochondrial membrane potential. The expressions of HSP70, Bcl-2, Bax and caspase-3 were measured with Western blotting. A nude mouse model bearing Hela229 cell xenograft was used to evaluate the effect of DDP and PFT-µ on tumor growth.
RESULTSHela229 cells expressed a higher level of HSP70 than normal cervical cells. The combined use of PFT-µ significantly enhanced the inhibitory effect of DDP (P<0.01) and increased the cell apoptosis in Hela229 cells. JC-1 staining demonstrated that DDP combined with PFT-µ more obviously reduced mitochondrial membrane potential. DDP combined with PFT-µ more strongly lowered Bcl-2 expression and increased the expressions of casepase-3 and Bax than DDP alone. In the nude mouse model, PFT-µ significantly enhanced DDP sensitivity of Hela229 cell xenografts (P<0.01).
CONCLUSIONSInhibition of HSP70 expression can enhance the sensitivity of cervical cancer cell to DDP both in vivo and in vitro possibly by promoting cell apoptosis, suggesting the potential of HSP70 as a new target for gene therapy of cervical cancer.
Animals ; Antineoplastic Agents ; pharmacology ; Apoptosis ; Caspase 3 ; metabolism ; Cell Proliferation ; Cell Survival ; Cisplatin ; pharmacology ; Drug Resistance, Neoplasm ; Female ; HSP70 Heat-Shock Proteins ; antagonists & inhibitors ; HeLa Cells ; Humans ; Membrane Potential, Mitochondrial ; Mice ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Sulfonamides ; pharmacology ; Uterine Cervical Neoplasms ; drug therapy ; pathology ; Xenograft Model Antitumor Assays ; bcl-2-Associated X Protein ; metabolism
8.Rat prostate glandular epithelial cells cultured in vitro and their barrier function.
Dong CUI ; Yong-gang SHANG ; Guang-wei HAN ; Cheng-cheng LIU ; Shan-hong YI
National Journal of Andrology 2016;22(2):133-137
OBJECTIVETo culture rat prostate glandular epithelial cells and study their barrier functions in vitro.
METHODSRat prostate glandular epithelial cells were cultured in vitro. The expression of the tight junction protein claudin-1 was determined by immunohistochemistry, the structure and composition of the epithelial cells observed under the inverted microscope and transmission electron microscope. The transepithelial electrical resistances (TEERs) were monitored with the Millicell system. The permeability of the prostate glandular epithelial cells was assessed by the phenol red leakage test.
RESULTSCompact monolayer cell structures were formed in the prostate glandular epithelial cells cultured in vitro. Immunohistochemistry showed the expression of the tight junction protein claudin-1 and transmission electron microscopy confirmed the formation of tight junctions between the adjacent glandular epithelial cells. The TEERs in the cultured prostate glandular epithelial cells reached the peak of about (201.3 ± 3.5) Ω/cm2 on the 8th day. The phenol red leakage test manifested a decreased permeability of the cell layers with the increase of TEERs.
CONCLUSIONThe structure and function of rat prostate glandular epithelial cells are similar to those of brain capillary endothelial cells, retinal capillary endothelial cells, and intestinal epithelial cells. In vitro cultured prostate glandular epithelial cells have the barrier function and can be used as a model for the study of blood prostate barrier in vitro.
Animals ; Cell Membrane Permeability ; Cells, Cultured ; Claudin-1 ; metabolism ; Electric Impedance ; Epithelial Cells ; pathology ; physiology ; ultrastructure ; In Vitro Techniques ; Male ; Microscopy, Electron, Transmission ; Phenolsulfonphthalein ; pharmacokinetics ; Prostate ; metabolism ; pathology ; Rats ; Tight Junctions
9.Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells.
Run-Sheng GUO ; Yue YU ; Jun CHEN ; Yue-Yu CHEN ; Na SHEN ; Ming QIU
Chinese Medical Journal 2016;129(12):1439-1446
BACKGROUNDBrain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers. However, its role in thyroid cancer has not been investigated yet. In the present study, the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated.
METHODSBASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed. pcDNA-BASP1 carrying full length of BASP1 cDNA was constructed to restore the expression of BASP1 in thyroid cancer cell lines (BHT-101 and KMH-2). The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models, respectively. Cell cycle distribution after transfection was analyzed using flow cytometry. Cell apoptosis after transfection was examined by annexin V/propidium iodide assay. The migration was examined using transwell assay.
RESULTSBASP1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P = 0.000). pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P = 0.000). pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells. In addition, pcDNA-BASP1 significantly inhibited the cell migration.
CONCLUSIONSDownregulation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer. Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells, which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer.
Aged ; Animals ; Apoptosis ; genetics ; physiology ; Calmodulin-Binding Proteins ; genetics ; metabolism ; Cell Cycle ; genetics ; physiology ; Cell Line, Tumor ; Cell Movement ; genetics ; physiology ; Cell Proliferation ; genetics ; physiology ; Cytoskeletal Proteins ; genetics ; metabolism ; Female ; Gene Expression Regulation, Neoplastic ; genetics ; physiology ; Humans ; Male ; Membrane Proteins ; genetics ; metabolism ; Mice ; Mice, Nude ; Middle Aged ; Nerve Tissue Proteins ; genetics ; metabolism ; Repressor Proteins ; genetics ; metabolism ; Thyroid Neoplasms ; metabolism ; pathology ; Xenograft Model Antitumor Assays
10.miR-140-5p affects the migration and invasion of hypopharyngeal carcinoma cells by downregulating ADAM10 expression.
Peihang JING ; Na SA ; Wei XU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2016;51(3):189-196
OBJECTIVETo investigate the expression of miR-140-5p and ADAM10 in hypopharyngeal carcinoma tissues and their effects on the migration and invasion of FaDu cells and underlying mechanism.
METHODSThe miR-140-5p and ADAM10 mRNA levels in 33 cases of hypopharyngeal carcinoma tissues and adjacent normal tissues were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Transwell migration assay and transwell invasion assay were used to test the metastasis ability of FaDu cells after upregulation or downregulation of miR-140-5p and downregulation of ADAM10. The protein expression levels of ADAM10 in hypopharyngeal carcinoma tissues and the FaDu cells after transfection were determined by Western blot assays.
RESULTSThe expression level of miR-140-5p was significantly downregulated in hypopharyngeal carcinoma tissues compared with adjacent tissues (t=-4.016, P<0.01), which was significantly correlated with tumor classification and lymph node metastasis (P<0.05). Conversely, mRNA and protein expressions of ADAM10 were significantly upregulated in tumor tissues (t=3.960, P<0.01; t=12.089, P<0.01), and were significantly downregulated in the FaDu cells after tranfected with si-ADAM10 (t=8.653, P<0.05; t=5.191, P<0.05). Transwell assay showed that compare with control group, the migration and invasive cells decreased significantly in hsa-mir-140-5p group (t=3.255, P<0.05; t=2.942, P<0.05), while increased significantly in anti-hsa-mir-140-5p group, (t=-13.521, P<0.05; t=-6.223, P<0.05). The migration and invasive cells in si-ADAM10 group were less than those in control group (t=4.759, P<0.05; t=3.663, P<0.05). The downregulation of ADAM10 attenuated the effect of anti-mir-140-5p in FaDu cells. Western blot assay showed that ADAM10 expression was apparently decreased in hsa-mir-140-5p group and increased in anti-mir-140-5p group compared with control group.
CONCLUSIONSThe expression of miR-140-5p was significantly downregulated in hypopharyngeal carcinoma tissues and correlated with tumor classification and lymph node metastasis. ADAM10 was upregulated in tumor tissues. MiR-140-5p suppresses the migration and invasion abilities of FaDu cells, possibly through downregulation of ADAM10.
ADAM Proteins ; metabolism ; ADAM10 Protein ; Amyloid Precursor Protein Secretases ; metabolism ; Cell Line, Tumor ; Cell Movement ; Down-Regulation ; Gene Expression Regulation, Neoplastic ; Humans ; Hypopharyngeal Neoplasms ; pathology ; Lymphatic Metastasis ; Membrane Proteins ; metabolism ; MicroRNAs ; metabolism ; RNA, Messenger ; metabolism ; Transfection

Result Analysis
Print
Save
E-mail