1.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
2.Research advances in the functional roles of ion channels in immune cells and immune response.
Acta Physiologica Sinica 2019;71(6):894-904
Ion channels are a widespread class of membrane proteins that help establish and control cell membrane potential by allowing the passive diffusion of inorganic ions with high specificity through cell membrane. They are widely distributed in various cells and tissues, and their normal structure and function are of fundamental importance for all living organisms. The rapid advances in molecular cloning, protein structure analysis, patch clamp recordings and other technologies have greatly promoted the research on the biophysical and molecular properties of ion channels, and made significant progress in the study of the relationship between ion channels and pathophysiology as well. The immune system is made up of immune cells and organs that work together to protect the body and respond to infection and disease. Remarkably, recent basic and clinical research has revealed that ion channels are frequently and abundantly expressed in immune cells and have crucial roles in immune cell development and immune response. This review summarized recent progress in the roles of ion channels in immune cells, including the expression and regulation of ion channels in immune cells, the effects of ion flux mediated by ion channels on lymphocyte development, and functional roles of ion channels in both innate and adaptive immune responses. We also discussed some unresolved and insufficiently addressed issues in the current research, so as to provide an informative reference for better understanding the functional roles of ion channels in the immune system and further elucidation of their function from a physiological and pathological point of view.
Cell Membrane
;
Immunity
;
physiology
;
Ion Channels
;
immunology
;
Membrane Proteins
;
Research
;
trends
3.LRRC25 plays a key role in all-trans retinoic acid-induced granulocytic differentiation as a novel potential leukocyte differentiation antigen.
Weili LIU ; Ting LI ; Pingzhang WANG ; Wanchang LIU ; Fujun LIU ; Xiaoning MO ; Zhengyang LIU ; Quansheng SONG ; Ping LV ; Guorui RUAN ; Wenling HAN
Protein & Cell 2018;9(9):785-798
Leukocyte differentiation antigens (LDAs) play important roles in the immune system, by serving as surface markers and participating in multiple biological activities, such as recognizing pathogens, mediating membrane signals, interacting with other cells or systems, and regulating cell differentiation and activation. Data mining is a powerful tool used to identify novel LDAs from whole genome. LRRC25 (leucine rich repeat-containing 25) was predicted to have a role in the function of myeloid cells by a large-scale "omics" data analysis. Further experimental validation showed that LRRC25 is highly expressed in primary myeloid cells, such as granulocytes and monocytes, and lowly/intermediately expressed in B cells, but not in T cells and almost all NK cells. It was down-regulated in multiple acute myeloid leukemia (AML) cell lines and bone marrow cells of AML patients and up-regulated after all-trans retinoic acid (ATRA)-mediated granulocytic differentiation in AML cell lines and acute promyelocytic leukemia (APL; AML-M3, FAB classification) cells. Localization analysis showed that LRRC25 is a type I transmembrane molecule. Although ectopic LRRC25 did not promote spontaneous differentiation of NB4 cells, knockdown of LRRC25 by siRNA or shRNA and knockout of LRRC25 by the CRISPR-Cas9 system attenuated ATRA-induced terminal granulocytic differentiation, and restoration of LRRC25 in knockout cells could rescue ATRA-induced granulocytic differentiation. Therefore, LRRC25, a potential leukocyte differentiation antigen, is a key regulator of ATRA-induced granulocytic differentiation.
Antigens, Differentiation
;
immunology
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cell Line, Tumor
;
Granulocytes
;
cytology
;
drug effects
;
immunology
;
metabolism
;
Humans
;
Leukocytes
;
cytology
;
drug effects
;
immunology
;
metabolism
;
Membrane Proteins
;
antagonists & inhibitors
;
immunology
;
metabolism
;
RNA, Small Interfering
;
pharmacology
;
Tretinoin
;
pharmacology
4.Anti-inflammatory and membrane stabilizing properties of methyl jasmonate in rats.
Solomon UMUKORO ; Akinyinka Oladipo ALABI ; Anthony Taghogho EDUVIERE ; Abayomi Mayowa AJAYI ; Oluwafemi Gabriel OLUWOLE
Chinese Journal of Natural Medicines (English Ed.) 2017;15(3):202-209
The present investigation was carried out to evaluate anti-inflammatory and membrane stabilizing properties of methyl jasmonate (MJ) in experimental rat models of acute and chronic inflammation. The effects of MJ on acute inflammation were assessed using carrageenan-induced rat's paw edema model. The granuloma air pouch model was employed to evaluate the effects of MJ on chronic inflammation produced by carrageenan in rats. The number of white blood cells (WBC) in pouch exudates was estimated using light microscopy. The levels of biomarkers of oxidative stress, such as malondialdehyde (MDA), glutathione (GSH) and activity of antioxidant enzymes in the exudates, were determined using spectrophotometry. The membrane stabilizing property of MJ was assessed based on inhibition of hemolysis of rat red blood cells (RBC) exposed to hypotonic medium. Our results indicated that MJ (25-100 mg·kg, i.p.) produced significant anti-inflammatory activity in carrageenan-induced paw edema in rats (P < 0.05). MJ reduced the volume of pouch exudates and the number of WBC in carrageenan-induced granulomatous inflammation. It also exhibited potent antioxidant and membrane stabilizing activities. In conclusion, these findings suggest the therapeutic potentials of methyl jasmonate in disease conditions associated with inflammation and its anti-inflammatory activity may be related to its antioxidant and membrane stabilizing activities.
Acetates
;
administration & dosage
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
Cell Membrane
;
chemistry
;
drug effects
;
immunology
;
Cyclopentanes
;
administration & dosage
;
Disease Models, Animal
;
Edema
;
drug therapy
;
immunology
;
Erythrocytes
;
chemistry
;
drug effects
;
Glutathione
;
immunology
;
Humans
;
Male
;
Malondialdehyde
;
immunology
;
Oxylipins
;
administration & dosage
;
Plant Extracts
;
administration & dosage
;
Rats
;
Rats, Wistar
5.The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection.
Xuyuan ZHANG ; Pan YANG ; Nan WANG ; Jialong ZHANG ; Jingyun LI ; Hao GUO ; Xiangyun YIN ; Zihe RAO ; Xiangxi WANG ; Liguo ZHANG
Protein & Cell 2017;8(8):590-600
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Amino Acid Sequence
;
Animals
;
Antibodies, Monoclonal
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Cell Line
;
Crystallography, X-Ray
;
Enterovirus A, Human
;
drug effects
;
genetics
;
growth & development
;
immunology
;
Fibroblasts
;
drug effects
;
virology
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Immunoglobulin Fab Fragments
;
chemistry
;
genetics
;
metabolism
;
Lysosome-Associated Membrane Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Mice
;
Models, Molecular
;
Protein Binding
;
Protein Conformation, alpha-Helical
;
Protein Conformation, beta-Strand
;
Protein Interaction Domains and Motifs
;
Receptors, Scavenger
;
chemistry
;
genetics
;
immunology
;
Receptors, Virus
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Sf9 Cells
;
Spodoptera
;
Thermodynamics
6.Eupatilin Ameliorates Collagen Induced Arthritis.
Juryun KIM ; Youngkyun KIM ; Hyoju YI ; Hyerin JUNG ; Yeri Alice RIM ; Narae PARK ; Seung Min JUNG ; Sung Hwan PARK ; Ji Hyeon JU
Journal of Korean Medical Science 2015;30(3):233-239
Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-alpha and then treated with eupatilin, and the levels of IL-6 and IL-1beta mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-alpha treatment of synoviocytes increased the expression of IL-6 and IL-1beta mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.
Animals
;
Anti-Inflammatory Agents/pharmacology/*therapeutic use
;
Arthritis, Experimental/chemically induced/*drug therapy
;
Arthritis, Rheumatoid/drug therapy/pathology
;
Cell Differentiation/*drug effects
;
Cells, Cultured
;
Collagen Type II
;
Cytokines/biosynthesis
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use
;
Female
;
Flavonoids/pharmacology/*therapeutic use
;
Humans
;
Inflammation/drug therapy/immunology
;
Interleukin-1beta/genetics/metabolism
;
Interleukin-6/genetics/metabolism
;
Lymph Nodes/cytology
;
Mice
;
Mice, Inbred DBA
;
Monocytes/cytology
;
Osteoclasts/*cytology
;
Plant Extracts/pharmacology
;
RNA, Messenger/biosynthesis
;
Synovial Membrane/cytology
;
T-Lymphocytes, Regulatory/cytology/immunology
;
Tumor Necrosis Factor-alpha/pharmacology
7.Preparation and characterization of rabbit anti-mouse zona pellucida 2 antibodies.
Chun-Cheng NIE ; Guan-Ying YAO ; Zuo-Wu CAO
Journal of Southern Medical University 2015;35(4):522-525
OBJECTIVETo prepare rabbit anti-mouse zona pellucida 2 (mZP2) polyclonal antibodies and test their immunoactivity.
METHODSRecombinant proteins of mZP2 expressed in Rosetta transformant was separated by SDS-PAGE, and the gel strips containing the recombinant mZP2 were cut out and emulsified to immunize New Zealand white rabbits. The antibody response of the antiserum was detected by ELISA, and the specificity of the antiserum was verified by immunohistochemical assay. The effect of the antiserum on the binding of oocytes with acrosomal reacted sperm was tested by sperm-egg binding assay.
RESULTSELISA results showed that the immunized rabbit produced anti-mZP2 antiserum. The antiserum reacted specifically with the zona pellucida of mouse ovarian sections. Sperm-egg binding assay showed that treatment of the oocytes with the anti-mZP2 antiserum caused decreased binding of zona pellucida with the acrosomal reacted sperm by 43.7%.
CONCLUSIONWe obtained rabbit anti-mouse ZP2 polyclonal antibodies that can inhibit the binding of oocytes with acrosomal reacted sperm.
Animals ; Antibodies ; immunology ; Antibody Formation ; Egg Proteins ; immunology ; Female ; Immune Sera ; Male ; Membrane Glycoproteins ; immunology ; Mice ; Oocytes ; Rabbits ; Receptors, Cell Surface ; immunology ; Recombinant Proteins ; immunology ; Sperm-Ovum Interactions ; Spermatozoa ; Zona Pellucida Glycoproteins
8.Identification of Outer Membrane Vesicles Derived from Orientia tsutsugamushi.
Sun Myoung LEE ; Hea Yoon KWON ; Jae Hyong IM ; Ji Hyeon BAEK ; Jae Seung KANG ; Jin Soo LEE
Journal of Korean Medical Science 2015;30(7):866-870
Orientia tsutsugamushi, a causative pathogen of Scrub typhus, is a gram-negative intracellular bacterium. Outer membrane vesicles (OMVs) are produced from the membrane of bacteria and play many roles related to the survival of the pathogen. However, there have been no reports confirming whether O. tsutsugamushi indeed produce OMVs. O. tsutsugamushi boryong was cultured in ECV-304 cells for the purification of OMVs. Western blot analysis and immunoenrichment using anti-O. tsutsugamushi monoclonal antibody and electron microscopy were employed for identification and characterization of OMVs. We confirm the presence of OMVs derived from O. tsutsugamushi, and also found that those OMVs contain a major surface antigen of 56-kDa protein and variant immunogenic antigens.
Antibodies, Monoclonal/*immunology
;
Antigens, Bacterial/*immunology
;
Antigens, Surface/*immunology
;
Cell Line
;
Cell Membrane/immunology
;
Humans
;
Microscopy, Electron
;
Orientia tsutsugamushi/*immunology/metabolism
;
Scrub Typhus/diagnosis/microbiology
;
Secretory Vesicles/*immunology
9.Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset.
Haisheng YU ; Peng ZHANG ; Xiangyun YIN ; Zhao YIN ; Quanxing SHI ; Ya CUI ; Guanyuan LIU ; Shouli WANG ; Pier Paolo PICCALUGA ; Taijiao JIANG ; Liguo ZHANG
Protein & Cell 2015;6(4):297-306
Dendritic cells (DCs) comprise two functionally distinct subsets: plasmacytoid DCs (pDCs) and myeloid DCs (mDCs). pDCs are specialized in rapid and massive secretion of type I interferon (IFN-I) in response to nucleic acids through Toll like receptor (TLR)-7 or TLR-9. In this report, we characterized a CD56(+) DC population that express typical pDC markers including CD123 and BDCA2 but produce much less IFN-I comparing with pDCs. In addition, CD56(+) DCs cluster together with mDCs but not pDCs by genome-wide transcriptional profiling. Accordingly, CD56(+) DCs functionally resemble mDCs by producing IL-12 upon TLR4 stimulation and priming naïve T cells without prior activation. These data suggest that the CD56(+) DCs represent a novel mDC subset mixed with some pDC features. A CD4(+)CD56(+) hematological malignancy was classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN) due to its expression of characteristic molecules of pDCs. However, we demonstrated that BPDCN is closer to CD56(+) DCs than pDCs by global gene-expression profiling. Thus, we propose that the CD4(+)CD56(+) neoplasm may be a tumor counterpart of CD56(+) mDCs but not pDCs.
Biomarkers
;
metabolism
;
CD56 Antigen
;
genetics
;
immunology
;
Cell Lineage
;
genetics
;
immunology
;
Dendritic Cells
;
immunology
;
metabolism
;
pathology
;
Gene Expression
;
Hematologic Neoplasms
;
genetics
;
immunology
;
pathology
;
Humans
;
Immunophenotyping
;
Interferon Type I
;
biosynthesis
;
metabolism
;
Interleukin-12
;
biosynthesis
;
metabolism
;
Interleukin-3 Receptor alpha Subunit
;
genetics
;
immunology
;
Lectins, C-Type
;
genetics
;
immunology
;
Membrane Glycoproteins
;
genetics
;
immunology
;
Myeloid Cells
;
immunology
;
metabolism
;
pathology
;
Receptors, Immunologic
;
genetics
;
immunology
;
Terminology as Topic
;
Toll-Like Receptor 4
;
genetics
;
immunology
;
Toll-Like Receptor 7
;
genetics
;
immunology
;
Toll-Like Receptor 9
;
genetics
;
immunology
10.Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.
Acta Physiologica Sinica 2014;66(1):16-22
The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.
Biological Transport
;
Cell Membrane
;
physiology
;
Chloride Channels
;
physiology
;
Cyclic AMP
;
physiology
;
Cytokines
;
immunology
;
Epithelial Cells
;
physiology
;
Epithelium
;
immunology
;
physiology
;
Humans
;
Ion Transport
;
Receptors, Purinergic P2Y
;
immunology
;
physiology
;
Signal Transduction

Result Analysis
Print
Save
E-mail