1.Safflower Yellow Compounds Alleviate Okadaic Acid-Induced Impairment of Neurite Outgrowth in Differentiated SH-SY5Y Cells.
Zhen Hua WANG ; Xiao Bing SHI ; Gang LI ; Xue Yan HAO ; Zhen Zhen YUAN ; Xiao Hai CAO ; Hong Lun WANG ; Ji LI ; Cheng Jun MA
Biomedical and Environmental Sciences 2020;33(10):812-816
2.Interaction between necroptosis and apoptosis in MC3T3-E1 cell death induced by dexamethasone.
Min FENG ; Ruirui ZHANG ; Pei YANG ; Kunzheng WANG ; Hui QIANG
Journal of Southern Medical University 2019;39(9):1030-1037
		                        		
		                        			OBJECTIVE:
		                        			To investigate the relationship between necroptosis and apoptosis in MCET3-E1 cell death induced by glucocorticoids.
		                        		
		                        			METHODS:
		                        			MC3T3-E1 cells were incubated with 10-6 mol/L dexamethasone followed by treatment with the apoptosis inhibitor z-VAD-fmk (40 μmol/L) or the necroptosis inhibitor necrostatin-1 (40 μmol/L) for 2 h. At 72 h after incubation with dexamethasone, the cells were harvested to determine the cell viability using WST-1 assay and the rate of necrotic cells using annexin V/PI double staining; the percentage of apoptotic cells was determined using Hoechst staining. The mitochondrial membrane potential and the level of ATP in the cells were also evaluated. Transmission electron microscopy was used to observe the microstructural changes of the cells. The expressions of RIP-1 and RIP-3 in the cells were detected by Western blotting.
		                        		
		                        			RESULTS:
		                        			At a concentration of 10-6 mol/L, dexamethasone induced both apoptosis and necroptosis in MC3T3- E1 cells. Annexin V/PI double staining showed that inhibition of cell apoptosis caused an increase in cell necrosis manifested by such changes as mitochondrial swelling and plasma membrane disruption, as shown by electron microscopy; Hoechst staining showed that the percentage of apoptotic cells was significantly reduced. When necroptosis was inhibited by necrostatin-1, MC3T3-E1 cells showed significantly increased apoptosis as shown by both AV/PI and Hoechst staining, and such changes were accompanied by changes in mitochondrial membrane potential and ATP level in the cells.
		                        		
		                        			CONCLUSIONS
		                        			In the process of dexamethasone-induced cell death, necroptosis and apoptosis can transform reciprocally accompanied by functional changes of the mitochondria.
		                        		
		                        		
		                        		
		                        			3T3 Cells
		                        			;
		                        		
		                        			Adenosine Triphosphate
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cell Death
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Dexamethasone
		                        			;
		                        		
		                        			Membrane Potential, Mitochondrial
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microscopy, Electron
		                        			;
		                        		
		                        			Mitochondria
		                        			;
		                        		
		                        			ultrastructure
		                        			;
		                        		
		                        			Necrosis
		                        			
		                        		
		                        	
3.Salvianolic Acid A Protects Neonatal Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Injury by Preserving Mitochondrial Function and Activating Akt/GSK-3β Signals.
Xue-Li LI ; Ji-Ping FAN ; Jian-Xun LIU ; Li-Na LIANG
Chinese journal of integrative medicine 2019;25(1):23-30
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects of salvianolic acid A (SAA) on cardiomyocyte apoptosis and mitochondrial dysfunction in response to hypoxia/reoxygenation (H/R) injury and to determine whether the Akt signaling pathway might play a role.
		                        		
		                        			METHODS:
		                        			An in vitro model of H/R injury was used to study outcomes on primary cultured neonatal rat cardiomyocytes. The cardiomyocytes were treated with 12.5, 25, 50 μg/mL SAA at the beginning of hypoxia and reoxygenation, respectively. Adenosine triphospate (ATP) and reactive oxygen species (ROS) levels were assayed. Cell apoptosis was evaluated by flow cytometry and the expression of cleaved-caspase 3, Bax and Bcl-2 were detected by Western blotting. The effects of SAA on mitochondrial dysfunction were examined by determining the mitochondrial membrane potential (△Ψm) and mitochondrial permeability transition pore (mPTP), followed by the phosphorylation of Akt (p-Akt) and GSK-3β (p-GSK-3β), which were measured by Western blotting.
		                        		
		                        			RESULTS:
		                        			SAA significantly preserved ATP levels and reduced ROS production. Importantly, SAA markedly reduced the number of apoptotic cells and decreased cleaved-caspase 3 expression levels, while also reducing the ratio of Bax/Bcl-2. Furthermore, SAA prevented the loss of △Ψm and inhibited the activation of mPTP. Western blotting experiments further revealed that SAA significantly increased the expression of p-Akt and p-GSK-3β, and the increase in p-GSK-3β expression was attenuated after inhibition of the Akt signaling pathway with LY294002.
		                        		
		                        			CONCLUSION
		                        			SAA has a protective effect on cardiomyocyte H/R injury; the underlying mechanism may be related to the preservation of mitochondrial function and the activation of the Akt/GSK-3β signaling pathway.
		                        		
		                        		
		                        		
		                        			Adenosine Triphosphate
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Animals, Newborn
		                        			;
		                        		
		                        			Caffeic Acids
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Hypoxia
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Lactates
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Mitochondria, Heart
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Mitochondrial Membrane Transport Proteins
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Myocytes, Cardiac
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
4.Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation.
Hong-Zhuo SHI ; Wen-Qiang CHANG ; Ming ZHANG ; Hong-Xiang LOU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):209-217
		                        		
		                        			
		                        			Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.
		                        		
		                        		
		                        		
		                        			ATP-Binding Cassette Transporters
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Antifungal Agents
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Azoles
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Biosynthetic Pathways
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Candida albicans
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Membrane
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Coculture Techniques
		                        			;
		                        		
		                        			Drug Resistance, Fungal
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Ergosterol
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Fungal Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lipids
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Permeability
		                        			;
		                        		
		                        			Phenyl Ethers
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Sterols
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Stilbenes
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Triterpenes
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
5.Role of mitochondrial permeability transition pore in mediating the inhibitory effect of gastrodin on oxidative stress in cardiac myocytes .
Xuechao HAN ; Jingman XU ; Sen XU ; Yahan SUN ; Mali HE ; Xiaodong LI ; Xinyu LI ; Jiayi PI ; Rui YU ; Wei TIAN
Journal of Southern Medical University 2018;38(11):1306-1311
		                        		
		                        			OBJECTIVE:
		                        			To explore the role of mitochondrial permeability transition pore (mPTP) in mediating the protective effect of gastrodin against oxidative stress damage in H9c2 cardiac myocytes.
		                        		
		                        			METHODS:
		                        			H9c2 cardiac myocytes were treated with HO, gastrodin, gastrodin+HO, cyclosporin A (CsA), or CsA+gas+HO group. MTT assay was used to detect the survival ratio of H9c2 cells, and flow cytometry with Annexin V-FITC/PI double staining was used to analyze the early apoptosis rate after the treatments. The concentration of ATP and level of reactive oxygen species (ROS) in the cells were detected using commercial kits. The mitochondrial membrane potential of the cells was detected with laser confocal microscopy. The expression of cytochrome C was detected with Western blotting, and the activity of caspase-3 was also assessed in the cells.
		                        		
		                        			RESULTS:
		                        			Gastrodin pretreatment could prevent oxidative stress-induced reduction of mitochondrial membrane potential, and this effect was inhibited by the application of CsA. Gastrodin significantly lowered the levels of ROS and apoptosis-related factors in HO-exposed cells, and such effects were reversed by CsA. CsA significantly antagonized the protective effect of gastrodin against apoptosis in HO-exposed cells.
		                        		
		                        			CONCLUSIONS
		                        			Gastrodin prevents oxidative stress-induced injury in H9c2 cells by inhibiting mPTP opening to reduce the cell apoptosis.
		                        		
		                        		
		                        		
		                        			Adenosine Triphosphate
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Benzyl Alcohols
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cyclosporine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cytochromes c
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Glucosides
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hydrogen Peroxide
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Membrane Potential, Mitochondrial
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Mitochondrial Membrane Transport Proteins
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Myocytes, Cardiac
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			analysis
		                        			
		                        		
		                        	
6.Effects of rosuvastatin in homocysteine induced mouse vascular smooth muscle cell dedifferentiation and endoplasmic reticulum stress and its mechanisms.
Chang-Zuan ZHOU ; Sun-Lei PAN ; Hui LIN ; Li-Ping MENG ; Zheng JI ; Ju-Fang CHI ; Hang-Yuan GUO
Chinese Journal of Applied Physiology 2018;34(1):43-48
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of rosuvastatin on homocysteine (Hcy) induced mousevascular smooth muscle cells(VSMCs) dedifferentiation and endoplasmic reticulum stress(ERS).
		                        		
		                        			METHODS:
		                        			VSMCs were co-cultured with Hcy and different concentration of rosuvastatin (0.1, 1.0 and 10 μmol/L). Cytoskeleton remodeling, VSMCs phenotype markers (smooth muscle actin-α, calponin and osteopontin) and ERS marker mRNAs (Herpud1, XBP1s and GRP78) were detected at predicted time. Tunicamycin was used to induce, respectively 4-phenylbutyrate(4-PBA) inhibition, ERS in VSMCs and cellular migration, proliferation and expression of phenotype proteins were analyzed. Mammalian target of rapamycin(mTOR)-P70S6 kinase (P70S6K) signaling agonist phosphatidic acid and inhibitor rapamycin were used in Rsv treated VSMCs. And then mTOR signaling and ERS associated mRNAs were detected.
		                        		
		                        			RESULTS:
		                        			Compared with Hcy group, Hcy+ Rsv group (1.0 and 10 μmol/L) showed enhanced α-SMA and calponin expression (<0.01), suppressed ERS mRNA levels (<0.01) and promoted polarity of cytoskeleton. Compared with Hcy group, Hcy+Rsv group and Hcy+4-PBA group showed suppressed proliferation, migration and enhanced contractile protein expression (<0.01); while tunicamycin could reverse the effect of Rsv on Hcy treated cells. Furthermore, alleviated mTOR-P70S6K phosphorylation and ERS (<0.01)were observed in Hcy+Rsv group and Hcy+rapamycin group, compared with Hcy group; while phosphatidic acid inhibited the effect of Rsv on mTOR signaling activation and ERS mRNA levels (<0.01).
		                        		
		                        			CONCLUSIONS
		                        			Rosuvastatin could inhibit Hcy induced VSMCs dedifferentiation suppressing ERS, which might be regulated by mTOR-P70S6K signaling.
		                        		
		                        		
		                        		
		                        			Actins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium-Binding Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Dedifferentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Endoplasmic Reticulum Stress
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Heat-Shock Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Homocysteine
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microfilament Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Ribosomal Protein S6 Kinases, 70-kDa
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rosuvastatin Calcium
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			X-Box Binding Protein 1
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.Effectiveness of omega-3 polyunsaturated fatty acids against microbial pathogens.
Warren CHANDA ; Thomson P JOSEPH ; Xue-Fang GUO ; Wen-Dong WANG ; Min LIU ; Miza S VUAI ; Arshad A PADHIAR ; Min-Tao ZHONG
Journal of Zhejiang University. Science. B 2018;19(4):253-262
		                        		
		                        			
		                        			Microorganisms provide both beneficial and harmful effects to human beings. Beneficial effects come from the symbiotic relationship that exists between humans and microbiota, but then several human illnesses have turned some friendly microbes into opportunistic pathogens, causing several microbial-related diseases. Various efforts have been made to create and utilize antimicrobial agents in the treatment and prevention of these infections, but such efforts have been hampered by the emergence of antimicrobial resistance. Despite extensive studies on drug discovery to alleviate this problem, issues with the toxicity and tolerance of certain compounds and continuous microbial evolution have forced researchers to focus on screening various phytochemical dietary compounds for antimicrobial activity. Linolenic acid and its derivatives (eicosapentaenoic acid and docosahexaenoic acid) are omega-3 fatty acids that have been studied due to their role in human health, being important for the brain, the eye, the cardiovascular system, and general human growth. However, their utilization as antimicrobial agents has not been widely appreciated, perhaps due to a lack of understanding of antimicrobial mechanisms, toxicity, and route of administration. Therefore, this review focuses on the efficacy, mechanism, and toxicity of omega-3 fatty acids as alternative therapeutic agents for treating and preventing diseases associated with pathogenic microorganisms.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Animals, Genetically Modified
		                        			;
		                        		
		                        			Anti-Infective Agents/chemistry*
		                        			;
		                        		
		                        			Antioxidants/chemistry*
		                        			;
		                        		
		                        			Bacterial Infections/microbiology*
		                        			;
		                        		
		                        			Cell Membrane/drug effects*
		                        			;
		                        		
		                        			Clinical Trials as Topic
		                        			;
		                        		
		                        			Docosahexaenoic Acids/chemistry*
		                        			;
		                        		
		                        			Drug Resistance, Bacterial
		                        			;
		                        		
		                        			Eicosapentaenoic Acid/chemistry*
		                        			;
		                        		
		                        			Fatty Acids, Omega-3/chemistry*
		                        			;
		                        		
		                        			Fishes
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lipids/chemistry*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microbiota
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			alpha-Linolenic Acid/chemistry*
		                        			
		                        		
		                        	
8.Comparative transcriptomic analysis reveals adriamycin-induced apoptosis via p53 signaling pathway in retinal pigment epithelial cells.
Yu-Chen LIN ; Ze-Ren SHEN ; Xiao-Hui SONG ; Xin LIU ; Ke YAO
Journal of Zhejiang University. Science. B 2018;19(12):895-909
		                        		
		                        			OBJECTIVE:
		                        			This paper applied a transcriptomic approach to investigate the mechanisms of adriamycin (ADR) in treating proliferative vitreoretinopathy (PVR) using ARPE-19 cells.
		                        		
		                        			METHODS:
		                        			The growth inhibitory effects of ADR on ARPE-19 cells were assessed by sulforhodamine B (SRB) assay and propidium iodide (PI) staining using flow cytometry. The differentially expressed genes between ADR-treated ARPE-19 cells and normal ARPE-19 cells and the signaling pathways involved were investigated by microarray analysis. Mitochondrial function was detected by JC-1 staining using flow cytometry and the Bcl-2/Bax protein family. The phosphorylated histone H2AX (γ-H2AX), phosphorylated checkpoint kinase 1 (p-CHK1), and phosphorylated checkpoint kinase 2 (p-CHK2) were assessed to detect DNA damage and repair.
		                        		
		                        			RESULTS:
		                        			ADR could significantly inhibit ARPE-19 cell proliferation and induce caspase-dependent apoptosis in vitro. In total, 4479 differentially expressed genes were found, and gene ontology items and the p53 signaling pathway were enriched. A protein-protein interaction analysis indicated that the TP53 protein molecules regulated by ADR were related to DNA damage and oxidative stress. ADR reduced mitochondrial membrane potential and the Bcl-2/Bax ratio. p53-knockdown restored the activation of c-caspase-3 activity induced by ADR by regulating Bax expression, and it inhibited ADR-induced ARPE-19 cell apoptosis. Finally, the levels of the γ-H2AX, p-CHK1, and p-CHK2 proteins were up-regulated after ADR exposure.
		                        		
		                        			CONCLUSIONS
		                        			The mechanism of ARPE-19 cell death induced by ADR may be caspase-dependent apoptosis, and it may be regulated by the p53-dependent mitochondrial dysfunction, activating the p53 signaling pathway through DNA damage.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Caspases/metabolism*
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cell Survival/drug effects*
		                        			;
		                        		
		                        			Doxorubicin/pharmacology*
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Membrane Potential, Mitochondrial
		                        			;
		                        		
		                        			Oligonucleotide Array Sequence Analysis
		                        			;
		                        		
		                        			Oxidative Stress/drug effects*
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Propidium/chemistry*
		                        			;
		                        		
		                        			RNA, Small Interfering/metabolism*
		                        			;
		                        		
		                        			Retinal Pigment Epithelium/metabolism*
		                        			;
		                        		
		                        			Rhodamines/chemistry*
		                        			;
		                        		
		                        			Signal Transduction/drug effects*
		                        			;
		                        		
		                        			Transcriptome
		                        			;
		                        		
		                        			Tumor Suppressor Protein p53/metabolism*
		                        			;
		                        		
		                        			Vitreoretinopathy, Proliferative/drug therapy*
		                        			
		                        		
		                        	
9.The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.
Shanyu CUI ; Hyewon PARK ; Hyelim PARK ; Dasom MUN ; Seung Hyun LEE ; Hyoeun KIM ; Nuri YUN ; Hail KIM ; Michael KIM ; Hui Nam PAK ; Moon Hyoung LEE ; Boyoung JOUNG
Yonsei Medical Journal 2018;59(2):279-286
		                        		
		                        			
		                        			PURPOSE: The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. MATERIALS AND METHODS: We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(−/−)-NP). RESULTS: During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(−/−)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. CONCLUSION: Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents.
		                        		
		                        		
		                        		
		                        			*Action Potentials/drug effects
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Membrane/drug effects/metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Electrocardiography
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			HSC70 Heat-Shock Proteins/metabolism
		                        			;
		                        		
		                        			HSP90 Heat-Shock Proteins/metabolism
		                        			;
		                        		
		                        			Heart Ventricles/drug effects/*metabolism
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Knockout
		                        			;
		                        		
		                        			Myocytes, Cardiac/drug effects/metabolism
		                        			;
		                        		
		                        			Potassium Channels/metabolism
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Receptors, Serotonin, 5-HT3/metabolism
		                        			;
		                        		
		                        			Serotonin/*metabolism
		                        			;
		                        		
		                        			Serotonin 5-HT3 Receptor Agonists/pharmacology
		                        			
		                        		
		                        	
10.LRRC25 plays a key role in all-trans retinoic acid-induced granulocytic differentiation as a novel potential leukocyte differentiation antigen.
Weili LIU ; Ting LI ; Pingzhang WANG ; Wanchang LIU ; Fujun LIU ; Xiaoning MO ; Zhengyang LIU ; Quansheng SONG ; Ping LV ; Guorui RUAN ; Wenling HAN
Protein & Cell 2018;9(9):785-798
		                        		
		                        			
		                        			Leukocyte differentiation antigens (LDAs) play important roles in the immune system, by serving as surface markers and participating in multiple biological activities, such as recognizing pathogens, mediating membrane signals, interacting with other cells or systems, and regulating cell differentiation and activation. Data mining is a powerful tool used to identify novel LDAs from whole genome. LRRC25 (leucine rich repeat-containing 25) was predicted to have a role in the function of myeloid cells by a large-scale "omics" data analysis. Further experimental validation showed that LRRC25 is highly expressed in primary myeloid cells, such as granulocytes and monocytes, and lowly/intermediately expressed in B cells, but not in T cells and almost all NK cells. It was down-regulated in multiple acute myeloid leukemia (AML) cell lines and bone marrow cells of AML patients and up-regulated after all-trans retinoic acid (ATRA)-mediated granulocytic differentiation in AML cell lines and acute promyelocytic leukemia (APL; AML-M3, FAB classification) cells. Localization analysis showed that LRRC25 is a type I transmembrane molecule. Although ectopic LRRC25 did not promote spontaneous differentiation of NB4 cells, knockdown of LRRC25 by siRNA or shRNA and knockout of LRRC25 by the CRISPR-Cas9 system attenuated ATRA-induced terminal granulocytic differentiation, and restoration of LRRC25 in knockout cells could rescue ATRA-induced granulocytic differentiation. Therefore, LRRC25, a potential leukocyte differentiation antigen, is a key regulator of ATRA-induced granulocytic differentiation.
		                        		
		                        		
		                        		
		                        			Antigens, Differentiation
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Granulocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Leukocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tretinoin
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail