1.Development and validation of a risk-prediction model for immune-related adverse events in patients with non-small-cell lung cancer receiving PD-1/PD-L1 inhibitors.
Qing QIU ; Chenghao WU ; Wenxiao TANG ; Longfei JI ; Guangwei DAI ; Yuzhen GAO ; Enguo CHEN ; Hanliang JIANG ; Xinyou XIE ; Jun ZHANG
Journal of Zhejiang University. Science. B 2023;24(10):935-942
Lung cancer remains the leading cause of cancer deaths worldwide and is the most common cancer in males. Immune-checkpoint inhibitors (ICIs) that target programmed cell death protein-1 (PD-1) or programmed cell death-ligand 1 (PD-L1) have achieved impressive efficacy in the treatment of non-small-cell lung cancer (NSCLC) (Pardoll, 2012; Champiat et al., 2016; Gao et al., 2022). Although ICIs are usually well tolerated, they are often accompanied by immune-related adverse events (irAEs) (Doroshow et al., 2019). Non-specific activation of the immune system produces off-target immune and inflammatory responses that can affect virtually any organ or system (O'Kane et al., 2017; Puzanov et al., 2017). Compared with adverse events caused by chemotherapy, irAEs are often characterized by delayed onset and prolonged duration and can occur in any organ at any stage of treatment, including after cessation of treatment (Puzanov et al., 2017; von Itzstein et al., 2020). They range from rash, pneumonitis, hypothyroidism, enterocolitis, and autoimmune hepatitis to cardiovascular, hematological, renal, neurological, and ophthalmic irAEs (Nishino et al., 2016; Kumar et al., 2017; Song et al., 2020). Hence, we conducted a retrospective study to identify validated factors that could predict the magnitude of the risk of irAEs in patients receiving PD-1/PD-L1 inhibitors; our approach was to analyze the correlation between the clinical characteristics of patients at the start of treatment and relevant indicators such as hematological indices and the risk of developing irAEs. Then, we developed an economical, practical, rapid, and simple model to assess the risk of irAEs in patients receiving ICI treatment, as early as possible.
Male
;
Humans
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Lung Neoplasms/drug therapy*
;
Immune Checkpoint Inhibitors/adverse effects*
;
Programmed Cell Death 1 Receptor
;
Retrospective Studies
;
Apoptosis
2.Clinical analysis of liver dysfunction induced by SHR-1210 alone or combined with apatinib and chemotherapy in patients with advanced esophageal squamous cell carcinoma.
Ling QI ; Bo ZHANG ; Yun LIU ; Lan MU ; Qun LI ; Xi WANG ; Jian Ping XU ; Xing Yuan WANG ; Jing HUANG
Chinese Journal of Oncology 2023;45(3):259-264
Objective: To investigate the clinical characteristics of abnormal liver function in patients with advanced esophageal squamous carcinoma treated with programmed death-1 (PD-1) antibody SHR-1210 alone or in combination with apatinib and chemotherapy. Methods: Clinical data of 73 patients with esophageal squamous carcinoma from 2 prospective clinical studies conducted at the Cancer Hospital Chinese Academy of Medical Sciences from May 11, 2016, to November 19, 2019, were analyzed, and logistic regression analysis was used for the analysis of influencing factors. Results: Of the 73 patients, 35 had abnormal liver function. 13 of the 43 patients treated with PD-1 antibody monotherapy (PD-1 monotherapy group) had abnormal liver function, and the median time to first abnormal liver function was 55 days. Of the 30 patients treated with PD-1 antibody in combination with apatinib and chemotherapy (PD-1 combination group), 22 had abnormal liver function, and the median time to first abnormal liver function was 41 days. Of the 35 patients with abnormal liver function, 2 had clinical symptoms, including malaise and loss of appetite, and 1 had jaundice. 28 of the 35 patients with abnormal liver function returned to normal and 7 improved to grade 1, and none of the patients had serious life-threatening or fatal liver function abnormalities. Combination therapy was a risk factor for patients to develop abnormal liver function (P=0.007). Conclusions: Most of the liver function abnormalities that occur during treatment with PD-1 antibody SHR-1210 alone or in combination with apatinib and chemotherapy are mild, and liver function can return to normal or improve with symptomatic treatment. For patients who receive PD-1 antibody in combination with targeted therapy and chemotherapy and have a history of long-term previous smoking, alcohol consumption and hepatitis B virus infection, liver function should be monitored and actively managed in a timely manner.
Humans
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Esophageal Neoplasms/pathology*
;
Prospective Studies
;
Programmed Cell Death 1 Receptor/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/adverse effects*
;
Liver Diseases/etiology*
3.Immune checkpoint inhibitors induced pituitary immune-related adverse events: diagnosis and management.
Yang Chun GU ; Chao XIE ; Bao Shan CAO
Chinese Journal of Oncology 2022;44(12):1344-1351
Immune checkpoint inhibitors (ICIs) have been used in treating a wide variety of cancers, but they challenge clinicians with a series of special immune related adverse events (irAEs) resulting from activated immune system. Since June 2018, when the first programmed cell death 1 (PD-1) inhibitor, nivolumab, was approved by the National Medical Products Administration (NMPA), abundant experience has been accumulated in coping with irAEs from PD-1 and PD-1 ligand 1 (PD-L1) blockade therapies. In October 2021, the first CTLA-4 inhibitor, ipilimumab, which has a different spectrum of irAEs was also approved by NMPA. The discrepancy in clinical features of pituitary irAEs is obvious between these two types of ICIs. Pituitary irAEs include hypophysitis and hypopituitarism. In this review of latest literature, we have summarized the incidence, possible mechanisms, time of onset, clinical presentations, hormone test, pituitary imaging, treatment strategies and recovery patterns of pituitary irAEs. By referring to domestic and foreign clinical guidelines, we have proposed practical suggestions for screening, diagnosing and treating pituitary irAEs.
Humans
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Antibodies, Monoclonal/adverse effects*
;
Programmed Cell Death 1 Receptor
;
CTLA-4 Antigen
;
Neoplasms/drug therapy*
4.Peripheral blood immune cell-based biomarkers in anti-PD-1/PD-L1 therapy
Kyung Hwan KIM ; Chang Gon KIM ; Eui Cheol SHIN
Immune Network 2020;20(1):8-
Immune checkpoint blockade targeting PD-1 and PD-L1 has resulted in unprecedented clinical benefit for cancer patients. Anti-PD-1/PD-L1 therapy has become the standard treatment for diverse cancer types as monotherapy or in combination with other anti-cancer therapies, and its indications are expanding. However, many patients do not benefit from anti-PD-1/PD-L1 therapy due to primary and/or acquired resistance, which is a major obstacle to broadening the clinical applicability of anti-PD-1/PD-L1 therapy. In addition, hyperprogressive disease, an acceleration of tumor growth following anti-PD-1/PD-L1 therapy, has been proposed as a new response pattern associated with deleterious prognosis. Anti-PD-1/PD-L1 therapy can also cause a unique pattern of adverse events termed immune-related adverse events, sometimes leading to treatment discontinuation and fatal outcomes. Investigations have been carried out to predict and monitor treatment outcomes using peripheral blood as an alternative to tissue biopsy. This review summarizes recent studies utilizing peripheral blood immune cells to predict various outcomes in cancer patients treated with anti-PD-1/PD-L1 therapy.
Acceleration
;
Antigens, CD274
;
Biomarkers
;
Biopsy
;
Drug-Related Side Effects and Adverse Reactions
;
Fatal Outcome
;
Humans
;
Prognosis
;
Programmed Cell Death 1 Receptor
5.Interaction between necroptosis and apoptosis in MC3T3-E1 cell death induced by dexamethasone.
Min FENG ; Ruirui ZHANG ; Pei YANG ; Kunzheng WANG ; Hui QIANG
Journal of Southern Medical University 2019;39(9):1030-1037
OBJECTIVE:
To investigate the relationship between necroptosis and apoptosis in MCET3-E1 cell death induced by glucocorticoids.
METHODS:
MC3T3-E1 cells were incubated with 10-6 mol/L dexamethasone followed by treatment with the apoptosis inhibitor z-VAD-fmk (40 μmol/L) or the necroptosis inhibitor necrostatin-1 (40 μmol/L) for 2 h. At 72 h after incubation with dexamethasone, the cells were harvested to determine the cell viability using WST-1 assay and the rate of necrotic cells using annexin V/PI double staining; the percentage of apoptotic cells was determined using Hoechst staining. The mitochondrial membrane potential and the level of ATP in the cells were also evaluated. Transmission electron microscopy was used to observe the microstructural changes of the cells. The expressions of RIP-1 and RIP-3 in the cells were detected by Western blotting.
RESULTS:
At a concentration of 10-6 mol/L, dexamethasone induced both apoptosis and necroptosis in MC3T3- E1 cells. Annexin V/PI double staining showed that inhibition of cell apoptosis caused an increase in cell necrosis manifested by such changes as mitochondrial swelling and plasma membrane disruption, as shown by electron microscopy; Hoechst staining showed that the percentage of apoptotic cells was significantly reduced. When necroptosis was inhibited by necrostatin-1, MC3T3-E1 cells showed significantly increased apoptosis as shown by both AV/PI and Hoechst staining, and such changes were accompanied by changes in mitochondrial membrane potential and ATP level in the cells.
CONCLUSIONS
In the process of dexamethasone-induced cell death, necroptosis and apoptosis can transform reciprocally accompanied by functional changes of the mitochondria.
3T3 Cells
;
Adenosine Triphosphate
;
Animals
;
Apoptosis
;
Cell Death
;
drug effects
;
Dexamethasone
;
Membrane Potential, Mitochondrial
;
Mice
;
Microscopy, Electron
;
Mitochondria
;
ultrastructure
;
Necrosis
6.Treatment-related Skin Toxicity Caused by Programmed Death-1 Inhibitor Nivolumab: A Case Report.
Lin GAO ; Yongfeng YU ; Shun LU
Chinese Journal of Lung Cancer 2019;22(4):250-254
BACKGROUND:
Nivolumab is an checkpoint inhibitor combining with programmed death-1 (PD-1) receptor on T cells, which can block the interactions between PD-1 and programmed death ligands (PD-L), including PD-L1 and PD-L2. And then block the immunosuppression mediated by the PD-1 pathway. The aim of the study is to investigate the clinical manifestations, diagnosis, treatment and prognosis of treatment-related skin toxicity caused by PD-1 inhibitor Nivolumab.
METHODS:
The clinical data of treatment-related skin toxicity caused by PD-1 inhibitor Nivolumab in a patient with advanced lung adenocarcinoma admitted to the Shanghai Chest Hospital was retrospectively analyzed. The diagnosis, treatment and prognosis of the patient were discussed.
RESULTS:
The patient was a 60-year-old male presented with relapse after surgery and adjuvant postoperative chemotherapy for his lung carcinoma. The patient's condition still progressed after multiple chemotherapy, targeted therapy and local radiotherapy of bone metastasis. Then Nivolumab, a kind of PD-1 inhibitors, was given intravenously every 3 weeks with the average dosage 3 mg/kg. After one cycle of Nivolumab, the patient began to have skin rashes, which aggravated gradually. The patient's skin toxicity was alleviated after enough steroids and was controlled with tapering steroids slowly. Now the patient was still given oral steroids treatment. And the lung disease remained stable.
CONCLUSIONS
Immune-related skin toxicity associated with PD-1 inhibitor should be aware of; early detection, early treatment and the prognosis could be better. It is necessary to improve the understanding of Immune-related skin toxicity associated with PD-1 inhibitor, to diagnose and treat it early, and the prognosis could be better.
Adenocarcinoma of Lung
;
drug therapy
;
Humans
;
Male
;
Middle Aged
;
Nivolumab
;
adverse effects
;
pharmacology
;
therapeutic use
;
Prognosis
;
Programmed Cell Death 1 Receptor
;
antagonists & inhibitors
;
Skin
;
drug effects
7.Molecular classification and precision therapy of cancer: immune checkpoint inhibitors.
Frontiers of Medicine 2018;12(2):229-235
On May 23, 2017, the US Food and Drug Administration (FDA) approved a treatment for cancer patients with positive microsatellite instability-high (MSI-H) markers or mismatch repair deficient (dMMR) markers. This approach is the first approved tumor treatment using a common biomarker rather than specified tumor locations in the body. FDA previously approved Keytruda for treatment of several types of malignancies, such as metastatic melanoma, metastatic non-small-cell lung cancer, recurrent or metastatic head and neck cancer, refractory Hodgkin lymphoma, and urothelial carcinoma, all of which carry positive programmed death-1/programmed death-ligand 1 biomarkers. Therefore, indications of Keytruda significantly expanded. Several types of malignancies are disclosed by MSI-H status due to dMMR and characterized by increased neoantigen load, which elicits intense host immune response in tumor microenvironment, including portions of colorectal and gastric carcinomas. Currently, biomarker-based patient selection remains a challenge. Pathologists play important roles in evaluating histology and biomarker results and establishing detection methods. Taking gastric cancer as an example, its molecular classification is built on genome abnormalities, but it lacks acceptable clinical characteristics. Pathologists are expected to act as "genetic interpreters" or "genetic translators" and build a link between molecular subtypes with tumor histological features. Subsequently, by using their findings, oncologists will carry out targeted therapy based on molecular classification.
Antibodies, Monoclonal, Humanized
;
adverse effects
;
therapeutic use
;
Antineoplastic Agents, Immunological
;
adverse effects
;
therapeutic use
;
Biomarkers, Tumor
;
Humans
;
Neoplasms
;
drug therapy
;
Precision Medicine
;
Programmed Cell Death 1 Receptor
;
antagonists & inhibitors
;
Treatment Outcome
;
United States
8.Moutan Cortex Radicis inhibits the nigrostriatal damage in a 6-OHDA-induced Parkinson's disease model.
Yeong-Gon CHOI ; Yeon-Mi HONG ; Li-Hua KIM ; Sujung YEO ; Sabina LIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):490-498
The traditionally used oriental herbal medicine Moutan Cortex Radicis [MCR; Paeonia Suffruticosa Andrews (Paeoniaceae)] exerts anti-inflammatory, anti-spasmodic, and analgesic effects. In the present study, we investigated the therapeutic effects of differently fractioned MCR extracts in a 6-hydroxydopamine (OHDA)-induced Parkinson's disease model and neuro-blastoma B65 cells. Ethanol-extracted MCR was fractionated by n-hexane, butanol, and distilled water. Adult Sprague-Dawley rats were treated first with 20 μg of 6-OHDA, followed by three MCR extract fractions (100 or 200 mg·kg) for 14 consecutive days. In the behavioral rotation experiment, the MCR extract-treated groups showed significantly decreased number of net turns compared with the 6-OHDA control group. The three fractions also significantly inhibited the reduction in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta following 6-OHDA neurotoxicity. Western blotting analysis revealed significantly reduced tyrosine hydroxylase expression in the substantia nigra pars compacta in the 6-OHDA-treated group, which was significantly inhibited by the n-hexane or distilled water fractions of MCR. B65 cells were exposed to the extract fractions for 24 h prior to addition of 6-OHDA for 30 min; treatment with n-hexane or distilled water fractions of MCR reduced apoptotic cell death induced by 6-OHDA neurotoxicity and inhibited nitric oxide production and neuronal nitric oxide synthase expression. These results showed that n-hexane- and distilled water-fractioned MCR extracts inhibited 6-OHDA-induced neurotoxicity by suppressing nitric oxide production and neuronal nitric oxide synthase activity, suggesting that MCR extracts could serve as a novel candidate treatment for the patients with Parkinson's disease.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
therapeutic use
;
Antiparkinson Agents
;
pharmacology
;
therapeutic use
;
Cell Death
;
drug effects
;
Cell Line
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
Neurons
;
pathology
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type I
;
biosynthesis
;
Oxidopamine
;
toxicity
;
Paeonia
;
chemistry
;
Parkinsonian Disorders
;
chemically induced
;
drug therapy
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plants, Medicinal
;
Rats
;
Rats, Sprague-Dawley
;
Substantia Nigra
;
drug effects
;
enzymology
;
Tyrosine 3-Monooxygenase
;
genetics
;
metabolism
9.Neuroprotective effect of the ethanol extract of Artemisia capillaris on transient forebrain ischemia in mice via nicotinic cholinergic receptor.
Huiyoung KWON ; Ji Wook JUNG ; Young Choon LEE ; Jong Hoon RYU ; Dong Hyun KIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):428-435
Artemisia capillaris Thunberg is a medicinal plant used as a traditional medicine in many cultures. It is an effective remedy for liver problems including hepatitis. Recent pharmacological reports have indicated that Artemisia species can exert various neurological effects. Previously, we reported a memory-enhancing effect of Artemisia species. However, the mechanisms underlying the neuroprotective effect of A. capillaris (AC) are still unknown. In the present study, we investigated the effect of an ethanol extract of AC on ischemic brain injury in a mouse model of transient forebrain ischemia. The mice were treated with AC for seven days, beginning one day before induction of transient forebrain ischemia. Behavioral deficits were investigated using the Y-maze. Nissl and Fluoro-jade B staining were used to indicate the site of injury. To determine the underlying mechanisms for the drug, we measured acetylcholinesterase activity. AC (200 mg·kg) treatment reduced transient forebrain ischemia-induced neuronal cell death in the hippocampal CA1 region. The AC-treated group also showed significant amelioration in the spontaneous alternation of the Y-maze test performance, compared to that in the untreated transient forebrain ischemia group. Moreover, AC treatment showed a concentration-dependent inhibitory effect on acetylcholinesterase activity in vitro. Finally, the effect of AC on forebrain ischemia was blocked by mecamylamine, a nonselective nicotinic acetylcholine receptor antagonist. Our results suggested that in a model of forebrain ischemia, AC protected against neuronal death through the activation of nicotinic acetylcholine receptors.
Acetylcholinesterase
;
metabolism
;
Animals
;
Artemisia
;
Cell Death
;
drug effects
;
Cholinergic Antagonists
;
pharmacology
;
Disease Models, Animal
;
Ethanol
;
chemistry
;
Hippocampus
;
pathology
;
physiopathology
;
Ischemic Attack, Transient
;
drug therapy
;
pathology
;
physiopathology
;
Male
;
Mecamylamine
;
pharmacology
;
Memory
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Models, Neurological
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Phytotherapy
;
Plant Components, Aerial
;
chemistry
;
Plant Extracts
;
administration & dosage
;
pharmacology
;
Receptors, Cholinergic
;
metabolism
10.C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death.
Yang LI ; Yu ZHANG ; Qiwen GAN ; Meng XU ; Xiao DING ; Guihua TANG ; Jingjing LIANG ; Kai LIU ; Xuezhao LIU ; Xin WANG ; Lingli GUO ; Zhiyang GAO ; Xiaojiang HAO ; Chonglin YANG
Protein & Cell 2018;9(12):1013-1026
Lysosomes are degradation and signaling centers within the cell, and their dysfunction impairs a wide variety of cellular processes. To understand the cellular effect of lysosome damage, we screened natural small-molecule compounds that induce lysosomal abnormality using Caenorhabditis elegans (C. elegans) as a model system. A group of vobasinyl-ibogan type bisindole alkaloids (ervachinines A-D) were identified that caused lysosome enlargement in C. elegans macrophage-like cells. Intriguingly, these compounds triggered cell death in the germ line independently of the canonical apoptosis pathway. In mammalian cells, ervachinines A-D induced lysosomal enlargement and damage, leading to leakage of cathepsin proteases, inhibition of autophagosome degradation and necrotic cell death. Further analysis revealed that this ervachinine-induced lysosome damage and lysosomal cell death depended on STAT3 signaling, but not RIP1 or RIP3 signaling. These findings suggest that lysosome-damaging compounds are promising reagents for dissecting signaling mechanisms underlying lysosome homeostasis and lysosome-related human disorders.
Alkaloids
;
pharmacology
;
Animals
;
Caenorhabditis elegans
;
cytology
;
drug effects
;
metabolism
;
Cell Death
;
drug effects
;
Cell Survival
;
drug effects
;
HeLa Cells
;
Humans
;
Lysosomes
;
drug effects
;
pathology
;
STAT3 Transcription Factor
;
metabolism
;
Signal Transduction
;
drug effects

Result Analysis
Print
Save
E-mail