1.RBM46 is essential for gametogenesis and functions in post-transcriptional roles affecting meiotic cohesin subunits.
Yue LV ; Gang LU ; Yuling CAI ; Ruibao SU ; Liang LIANG ; Xin WANG ; Wenyu MU ; Xiuqing HE ; Tao HUANG ; Jinlong MA ; Yueran ZHAO ; Zi-Jiang CHEN ; Yuanchao XUE ; Hongbin LIU ; Wai-Yee CHAN
Protein & Cell 2023;14(1):51-63
RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.
Animals
;
Mice
;
3' Untranslated Regions/genetics*
;
Cell Cycle Proteins/metabolism*
;
Gametogenesis/genetics*
;
Meiosis/genetics*
;
Nuclear Proteins/genetics*
;
RNA-Binding Proteins/genetics*
2.WDR62-deficiency Causes Autism-like Behaviors Independent of Microcephaly in Mice.
Dan XU ; Yiqiang ZHI ; Xinyi LIU ; Le GUAN ; Jurui YU ; Dan ZHANG ; Weiya ZHANG ; Yaqing WANG ; Wucheng TAO ; Zhiheng XU
Neuroscience Bulletin 2023;39(9):1333-1347
Brain size abnormality is correlated with an increased frequency of autism spectrum disorder (ASD) in offspring. Genetic analysis indicates that heterozygous mutations of the WD repeat domain 62 (WDR62) are associated with ASD. However, biological evidence is still lacking. Our study showed that Wdr62 knockout (KO) led to reduced brain size with impaired learning and memory, as well as ASD-like behaviors in mice. Interestingly, Wdr62 Nex-cKO mice (depletion of WDR62 in differentiated neurons) had a largely normal brain size but with aberrant social interactions and repetitive behaviors. WDR62 regulated dendritic spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. Finally, we revealed that retinoic acid gavages significantly alleviated ASD-like behaviors in mice with WDR62 haploinsufficiency, probably by complementing the expression of ASD and synapse-related genes. Our findings provide a new perspective on the relationship between the microcephaly gene WDR62 and ASD etiology that will benefit clinical diagnosis and intervention of ASD.
Mice
;
Animals
;
Microcephaly/genetics*
;
Autistic Disorder/metabolism*
;
Autism Spectrum Disorder/metabolism*
;
Nerve Tissue Proteins/metabolism*
;
Brain/metabolism*
;
Mice, Knockout
;
Cell Cycle Proteins/metabolism*
3.Biallelic mutations in WDR12 are associated with male infertility with tapered-head sperm.
Juan HUA ; Lan GUO ; Yao YAO ; Wen HU ; Yang-Yang WAN ; Bo XU
Asian Journal of Andrology 2023;25(3):398-403
Teratozoospermia is a rare disease associated with male infertility. Several recurrent genetic mutations have been reported to be associated with abnormal sperm morphology, but the genetic basis of tapered-head sperm is not well understood. In this study, whole-exome sequencing (WES) identified a homozygous WD repeat domain 12 (WDR12; p.Ser162Ala/c.484T>G) variant in an infertile patient with tapered-head spermatozoa from a consanguineous Chinese family. Bioinformatic analysis predicted this mutation to be a pathogenic variant. To verify the effect of this variant, we analyzed WDR12 protein expression in spermatozoa of the patient and a control individual, as well as in the 293T cell line, by Western blot analysis, and found that WDR12 expression was significantly downregulated. To understand the role of normal WDR12, we evaluated its mRNA and protein expression in mice at different ages. We observed that WDR12 expression was increased in pachytene spermatocytes, with intense staining visible in round spermatid nuclei. Based on these results, the data suggest that the rare biallelic pathogenic missense variant (p.Ser162Ala/c.484T>G) in the WDR12 gene is associated with tapered-head spermatozoa. In addition, after intracytoplasmic sperm injection (ICSI), a successful pregnancy was achieved. This finding indicates that infertility associated with this WDR12 homozygous mutation can be overcome by ICSI. The present results may provide novel insights into understanding the molecular mechanisms of male infertility.
Humans
;
Pregnancy
;
Female
;
Male
;
Animals
;
Mice
;
Teratozoospermia/pathology*
;
Semen/metabolism*
;
Infertility, Male/metabolism*
;
Spermatozoa/metabolism*
;
Mutation
;
RNA-Binding Proteins/metabolism*
;
Cell Cycle Proteins/genetics*
4.Progress in the Study of Spindle Assembly Checkpoint in Lung Cancer.
Xinchen QIN ; Yao ZHANG ; Haijie YU ; Lijuan MA
Chinese Journal of Lung Cancer 2023;26(4):310-318
Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.
Humans
;
Cell Cycle Proteins/metabolism*
;
Spindle Apparatus/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
M Phase Cell Cycle Checkpoints/genetics*
;
Lung Neoplasms/metabolism*
5.lncR-GAS5 upregulates the splicing factor SRSF10 to impair endothelial autophagy, leading to atherogenesis.
Yuhua FAN ; Yue ZHANG ; Hongrui ZHAO ; Wenfeng LIU ; Wanqing XU ; Lintong JIANG ; Ranchen XU ; Yue ZHENG ; Xueqing TANG ; Xiaohan LI ; Limin ZHAO ; Xin LIU ; Yang HONG ; Yuan LIN ; Hui CHEN ; Yong ZHANG
Frontiers of Medicine 2023;17(2):317-329
Long noncoding RNAs (lncRNAs) play a critical role in the regulation of atherosclerosis. Here, we investigated the role of the lncRNA growth arrest-specific 5 (lncR-GAS5) in atherogenesis. We found that the enforced expression of lncR-GAS5 contributed to the development of atherosclerosis, which presented as increased plaque size and reduced collagen content. Moreover, impaired autophagy was observed, as shown by a decreased LC3II/LC3I protein ratio and an elevated P62 level in lncR-GAS5-overexpressing human aortic endothelial cells. By contrast, lncR-GAS5 knockdown promoted autophagy. Moreover, serine/arginine-rich splicing factor 10 (SRSF10) knockdown increased the LC3II/LC3I ratio and decreased the P62 level, thus enhancing the formation of autophagic vacuoles, autolysosomes, and autophagosomes. Mechanistically, lncR-GAS5 regulated the downstream splicing factor SRSF10 to impair autophagy in the endothelium, which was reversed by the knockdown of SRSF10. Further results revealed that overexpression of the lncR-GAS5-targeted gene miR-193-5p promoted autophagy and autophagic vacuole accumulation by repressing its direct target gene, SRSF10. Notably, miR-193-5p overexpression decreased plaque size and increased collagen content. Altogether, these findings demonstrate that lncR-GAS5 partially contributes to atherogenesis and plaque instability by impairing endothelial autophagy. In conclusion, lncR-GAS5 overexpression arrested endothelial autophagy through the miR-193-5p/SRSF10 signaling pathway. Thus, miR-193-5p/SRSF10 may serve as a novel treatment target for atherosclerosis.
Humans
;
Atherosclerosis/genetics*
;
Autophagy/genetics*
;
Cell Cycle Proteins/metabolism*
;
Endothelial Cells/metabolism*
;
Endothelium/metabolism*
;
MicroRNAs/metabolism*
;
Repressor Proteins/metabolism*
;
RNA Splicing Factors
;
Serine-Arginine Splicing Factors/genetics*
;
RNA, Long Noncoding/metabolism*
7.Influence of 6-shogaol potentiated on 5-fluorouracil treatment of liver cancer by promoting apoptosis and cell cycle arrest by regulating AKT/mTOR/MRP1 signalling.
Yi ZHANG ; Yong QU ; Yun-Zhong CHEN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(5):352-363
Currently, chemoresistance seriously attenuates the curative outcome of liver cancer. The purpose of our work was to investigate the influence of 6-shogaol on the inhibition of 5-fluorouracil (5-FU) in liver cancer. The cell viability of cancer cells was determined by MTT assay. Liver cancer cell apoptosis and the cell cycle were examined utilizing flow cytometry. Moreover, qRT-PCR and western blotting was used to analyse the mRNA and protein expression levels, respectively. Immunohistochemistry assays were used to examine multidrug resistance protein 1 (MRP1) expression in tumour tissues. In liver cancer cells, we found that 6-shogaol-5-FU combination treatment inhibited cell viability, facilitated G0/G1 cell cycle arrest, and accelerated apoptosis compared with 6-shogaol or 5-FU treatment alone. In cancer cells cotreated with 6-shogaol and 5-FU, AKT/mTOR pathway- and cell cycle-related protein expression levels were inhibited, and MRP1 expression was downregulated. AKT activation or MRP1 increase reversed the influence of combination treatment on liver cancer cell viability, apoptosis and cell cycle arrest. The inhibition of AKT activation to the anticancer effect of 6-shogaol-5-FU could be reversed by MRP1 silencing. Moreover, our results showed that 6-shogaol-5-FU combination treatment notably inhibited tumour growth in vivo. In summary, our data demonstrated that 6-shogaol contributed to the curative outcome of 5-FU in liver cancer by inhibiting the AKT/mTOR/MRP1 signalling pathway.
ATP Binding Cassette Transporter, Subfamily B, Member 1
;
Apoptosis
;
Catechols
;
Cell Cycle
;
Cell Cycle Checkpoints
;
Cell Line, Tumor
;
Cell Proliferation
;
Drug Resistance, Neoplasm
;
Fluorouracil/pharmacology*
;
Humans
;
Liver Neoplasms/genetics*
;
Multidrug Resistance-Associated Proteins
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
8.Effect of Curcumin on the Proliferation, Apoptosis, and Cell Cycle of Human Acute Myeloid Leukemia Cell Line K562.
Ying-Ying LI ; Hong-Chun LIU ; Qing ZHANG ; Rui-Ting FENG ; Yin-Sen SONG ; Liang MING
Journal of Experimental Hematology 2022;30(5):1343-1347
OBJECTIVE:
To investigate the effects of curcumin on the proliferation, apoptosis, and cell cycle of human acute myeloid leukemia cell line K562.
METHODS:
MTT method was used to detect the proliferation inhibition of logarithmic growth phase human acute myeloid leukemia K562 cells, flow cytometry was used to detect the cell cycle, Annexin V-FITC was used to detect the apoptosis rate, and real-time fluorescent quantitative PCR and Western blot were used to detect the expression of Bax, BCL-2 and caspase-3 mRNA and protein, respectively.
RESULTS:
The inhibition rate of cell proliferation in curcumin 10, 20, and 40 μmol/L group for 24 h and 48 h were higher than that in the control group (curcumin 0 μmol/L), and the cell proliferation inhibition rate was concentration-time dependent (r=0.879, r=0.914). The proportion of G0/G1 cells and apoptosis rate of K562 cells in the curcumin 10, 20, and 40 μmol/L group were higher than those in the control group, and showed drug concentration dependent (r=0.856, r=0.782). The expression of Bax and Caspase-3 mRNA in the curcumin 10, 20, and 40 μmol/L group was higher, while BCL-2 mRNA was lower than those in the control group, and showed drug concentration dependent (r=0.861, r=0.748, r=-0.817). The gray value of Bax protein expression in the curcumin 10, 20, and 40 μmol/L group was higher than that in the control group, while the gray value of BCL-2 and Caspase-3 protein expression was lower than that in the control group, and showed drug concentration dependent (r=0.764, r=-0.723, r=-0.831).
CONCLUSION
Curcumin can inhibit the proliferation of human acute myeloid leukemia cell line K562 cells, block the cell cycle at G0/G1 phase, promote cell apoptosis, and induce apoptosis by regulating Bax, BCL-2, and Caspase-3.
Apoptosis
;
Caspase 3/metabolism*
;
Cell Cycle
;
Cell Proliferation
;
Curcumin/pharmacology*
;
Humans
;
K562 Cells
;
Leukemia, Myeloid, Acute/genetics*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
bcl-2-Associated X Protein/pharmacology*
9.7SK truncation at 128-179 nt suppresses embryonic stem cell proliferation
Rui CHEN ; Yurong ZHANG ; Peng CHEN ; Yixin PANG ; Hongbao LI ; Ziwei CHEN ; Xiaoyong ZHANG ; Hongyi ZHANG ; Wujun LI
Journal of Southern Medical University 2021;41(8):1125-1130
OBJECTIVE:
To explore the role of small nuclear noncoding RNA 7SK in embryonic stem cell (ESCs) proliferation and the value of 7SK as a target for early diagnosis and treatment for primordial dwarfism (PD).
METHODS:
ESC line R1 was transfected with the CRISPR/Cas9 system, and sequencing of the PCR product and glycerol gradient analysis were performed to identify novel 7SK deletion mutations. A lentivirus system was used to knock down cyclin-dependent kinase 9 (CDK9) in clones with 7SK deletion mutations, and the effect of CDK9 knockdown on the protein level of cell division cycle 6 (CDC6) was analyzed with Western blotting.
RESULTS:
We identified a novel deletion mutation of 7SK at 128-179 nt in the ESCs, which resulted in deficiency of cell proliferation. 7SK truncation at 128-179 nt significantly reduced the protein expressions of La-related protein 7 (LARP7) and CDC6.
CONCLUSIONS
7SK truncation at 128-179 nt can significantly impair proliferation of ESCs by downregulating CDC6. 7SK is a key regulator of proliferation and mediates the growth of ESCs through a mechanism dependent on CDK9 activity, suggesting the value of 7SK truncation at 128-179 nt as a potential target for early diagnosis and treatment of PD.
Cell Cycle Proteins
;
Cell Proliferation
;
Embryonic Stem Cells/metabolism*
;
HeLa Cells
;
Humans
;
Nuclear Proteins
;
Positive Transcriptional Elongation Factor B/metabolism*
;
RNA, Long Noncoding/genetics*
;
RNA-Binding Proteins
;
Ribonucleoproteins
;
Transcription Factors
10.The role of tyrosine phosphatase Shp2 in spermatogonial differentiation and spermatocyte meiosis.
Yang LI ; Wen-Sheng LIU ; Jia YI ; Shuang-Bo KONG ; Jian-Cheng DING ; Yi-Nan ZHAO ; Ying-Pu TIAN ; Gen-Sheng FENG ; Chao-Jun LI ; Wen LIU ; Hai-Bin WANG ; Zhong-Xian LU
Asian Journal of Andrology 2020;22(1):79-87
The transition from spermatogonia to spermatocytes and the initiation of meiosis are key steps in spermatogenesis and are precisely regulated by a plethora of proteins. However, the underlying molecular mechanism remains largely unknown. Here, we report that Src homology domain tyrosine phosphatase 2 (Shp2; encoded by the protein tyrosine phosphatase, nonreceptor type 11 [Ptpn11] gene) is abundant in spermatogonia but markedly decreases in meiotic spermatocytes. Conditional knockout of Shp2 in spermatogonia in mice using stimulated by retinoic acid gene 8 (Stra8)-cre enhanced spermatogonial differentiation and disturbed the meiotic process. Depletion of Shp2 in spermatogonia caused many meiotic spermatocytes to die; moreover, the surviving spermatocytes reached the leptotene stage early at postnatal day 9 (PN9) and the pachytene stage at PN11-13. In preleptotene spermatocytes, Shp2 deletion disrupted the expression of meiotic genes, such as disrupted meiotic cDNA 1 (Dmc1), DNA repair recombinase rad51 (Rad51), and structural maintenance of chromosome 3 (Smc3), and these deficiencies interrupted spermatocyte meiosis. In GC-1 cells cultured in vitro, Shp2 knockdown suppressed the retinoic acid (RA)-induced phosphorylation of extracellular-regulated protein kinase (Erk) and protein kinase B (Akt/PKB) and the expression of target genes such as synaptonemal complex protein 3 (Sycp3) and Dmc1. Together, these data suggest that Shp2 plays a crucial role in spermatogenesis by governing the transition from spermatogonia to spermatocytes and by mediating meiotic progression through regulating gene transcription, thus providing a potential treatment target for male infertility.
Animals
;
Cell Cycle Proteins/genetics*
;
Cell Line
;
Cell Survival
;
Chondroitin Sulfate Proteoglycans/genetics*
;
Chromosomal Proteins, Non-Histone/genetics*
;
Gene Expression Regulation
;
Gene Knockdown Techniques
;
Infertility, Male
;
Male
;
Meiosis/genetics*
;
Mice
;
Mice, Knockout
;
Mice, Transgenic
;
Phosphate-Binding Proteins/genetics*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics*
;
Rad51 Recombinase/genetics*
;
Real-Time Polymerase Chain Reaction
;
Spermatocytes/metabolism*
;
Spermatogenesis/genetics*
;
Spermatogonia/metabolism*

Result Analysis
Print
Save
E-mail