1.The Effect and Mechanism of Novel Telomerase Inhibitor Nilo 22 on Leukemia Cells.
Jing-Jing YIN ; Qian TANG ; Jia-Li GU ; Ya-Fang LI ; Hui-Er GAO ; Mei HE ; Ming YANG ; Wen-Shan ZHANG ; Hui XU ; Chao-Qun WANG ; Ying-Hui LI ; Cui-Gai BAI ; Ying-Dai GAO
Journal of Experimental Hematology 2021;29(4):1056-1064
OBJECTIVE:
To investigate the cytotoxic effect and its mechanism of the micromolecule compound on the leukemia cells.
METHODS:
The cytotoxic effects of 28 Nilotinib derivatives on K562, KA, KG, HA and 32D cell lines were detected by MTT assays, and the compound Nilo 22 was screen out. Cell apoptosis and cell cycle on leukemia cells were detected by flow cytometry. The effect of compound screened out on leukemogenesis potential of MLL-AF9 leukemia mice GFP
RESULTS:
Nilo 22 serves as the most outstanding candidate out of 28 Nilotinib derivatives, which impairs leukemia cell lines, but spares normal hematopoietic cell line. Comparing with Nilotinib, Nilo 22 could induce the apoptosis of GFP
CONCLUSION
Nilo 22 shows a significant cytotoxic effect on mice and human leukemia cells, especially for drug resistance cells. Nilo 22 is a promising anti-leukemia agent to solve the common clinical problems of drug resistance and relapse of leukemia.
Animals
;
Apoptosis/drug effects*
;
Cell Cycle/drug effects*
;
Cell Line, Tumor
;
Humans
;
Leukemia
;
Mice
;
Myeloid-Lymphoid Leukemia Protein/genetics*
;
Telomerase/metabolism*
;
Telomere/metabolism*
2.Divergent effects of lycopene on pancreatic alpha and beta cells.
Wei-Huang LIU ; Qiao-Na WANG ; Ying ZHOU ; Yan-Jun WANG ; Zan TONG
Acta Physiologica Sinica 2020;72(2):133-138
Lycopene is an antioxidant which has potential anti-diabetic activity, but the cellular mechanisms have not been clarified. In this study, different concentrations of lycopene were used to treat pancreatic alpha and beta cell lines, and the changes of cell growth, cell apoptosis, cell cycle, reactive oxygen species (ROS), ATP levels and expression of related cytokines were determined. The results exhibited that lycopene did not affect cell growth, cell apoptosis, cell cycle, ROS and ATP levels of alpha cells, while it promoted the growth of beta cells, increased the ratio of S phase, reduced the ROS levels and increased the ATP levels of beta cells. At the same time, lycopene treatment elevated the mRNA expression levels of tnfα, tgfβ and hif1α in beta cells. These findings suggest that lycopene plays cell-specific role and activates pancreatic beta cells, supporting its application in diabetes therapy.
Adenosine Triphosphate
;
metabolism
;
Apoptosis
;
Carotenoids
;
pharmacology
;
Cell Cycle
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Glucagon-Secreting Cells
;
drug effects
;
Humans
;
Insulin-Secreting Cells
;
drug effects
;
Lycopene
;
pharmacology
;
Reactive Oxygen Species
;
metabolism
3.Safflower Yellow Compounds Alleviate Okadaic Acid-Induced Impairment of Neurite Outgrowth in Differentiated SH-SY5Y Cells.
Zhen Hua WANG ; Xiao Bing SHI ; Gang LI ; Xue Yan HAO ; Zhen Zhen YUAN ; Xiao Hai CAO ; Hong Lun WANG ; Ji LI ; Cheng Jun MA
Biomedical and Environmental Sciences 2020;33(10):812-816
4.Carfilzomib inhibits the growth of lung adenocarcinoma via upregulation of Gadd45a expression.
Fang YANG ; Wang-Wang LIU ; Hui CHEN ; Jia ZHU ; Ai-Hua HUANG ; Fei ZHOU ; Yi GAN ; Yan-Hua ZHANG ; Li MA
Journal of Zhejiang University. Science. B 2020;21(1):64-76
Proteasome inhibitors have shown remarkable success in the treatment of hematologic neoplasm. There has been a lot of attention to applying these drugs for solid tumor treatment. Recent preclinical study has signified the effectiveness on cell proliferation inhibition in lung adenocarcinoma treated by carfilzomib (CFZ), a second generation proteasome inhibitor. However, no insight has been gained regarding the mechanism. In this study, we have systematically investigated the CFZ functions in cell proliferation and growth, cell cycle arrest, and apoptosis in lung adenocarcinoma cells. Flow cytometry experiments showed that CFZ significantly induced G2/M cell cycle arrest and apoptosis in lung adenocarcinoma. MTS and colony formation assays revealed that CFZ substantially inhibited survival of lung adenocarcinoma cells. All results were consistently correlated to the upregulation expression of Gadd45a, which is an important gene in modulating cell cycle arrest and apoptosis in response to physiologic and environmental stresses. Here, upregulation of Gadd45a expression was observed after CFZ treatment. Knocking down Gadd45a expression suppressed G2/M arrest and apoptosis in CFZ-treated cells, and reduced cytotoxicity of this drug. The protein expression analysis has further identified that the AKT/FOXO3a pathway is involved in Gadd45a upregulation after CFZ treatment. These findings unveil a novel mechanism of proteasome inhibitor in anti-solid tumor activity, and shed light on novel preferable therapeutic strategy for lung adenocarcinoma. We believe that Gadd45a expression can be a highly promising candidate predictor in evaluating the efficacy of proteasome inhibitors in solid tumor therapy.
Adenocarcinoma of Lung/pathology*
;
Apoptosis/drug effects*
;
Cell Cycle Checkpoints/drug effects*
;
Cell Cycle Proteins/genetics*
;
Cell Line, Tumor
;
Forkhead Box Protein O3/physiology*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Humans
;
Lung Neoplasms/pathology*
;
Oligopeptides/pharmacology*
;
Proto-Oncogene Proteins c-akt/physiology*
;
Up-Regulation
5.Interleukin-17 promotes mouse hepatoma cell proliferation by antagonizing interferon-γ.
Jie LI ; Kun YAN ; Yi YANG ; Hua LI ; Zhidong WANG ; Xin XU
Journal of Southern Medical University 2019;39(1):1-5
OBJECTIVE:
To investigate the interaction between interleukin-17 (IL-17) and interferon-γ (IFN-γ) and how their interaction affects the growth of mouse hepatoma Hepa1-6 cells.
METHODS:
Hepa1-6 cells treated with IL-17 and IFN-γ either alone or in combination were examined for changes in cell proliferation using MTT assay and in cell cycle distribution using flow cytometry. Western blotting was used to detect the protein expression levels of proliferating cell nuclear antigen (PCNA), cyclin D1, P21 and P16 and the phosphorylation of p38MAPK, ERK1/2 and Stat1 in the cells.
RESULTS:
Compared with control group, IFN-γ treatment obviously inhibited the growth and proliferation of Hepa1-6 cells, induced cell cycle arrest at G0/G1 phase, reduced the protein expression of PCNA and cyclin D1, and increased the protein expression of P21. IL-17 alone had no effect on the growth of Hepa1-6 cells. In the combined treatment, IL-17 significantly antagonized the effects of IFN-γ. Compared with those treated with IFN-γ alone, the cells with the combined treatment showed significantly decreased G0/G1 cell population, increased the protein expressions of PCNA and cyclin D1, and decreased the protein expression of P21. IL-17 significantly inhibited IFN-γ-induced phosphorylation of p38MAPK and ERK1/2 without affecting the phosphorylation of Stat1.
CONCLUSIONS
IL-17 obviously reverses the antitumor effects of IFN-γ to promote the proliferation of mouse hepatoma cells and accelerate the development of hepatocellular carcinoma.
Animals
;
Carcinoma, Hepatocellular
;
metabolism
;
pathology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cyclin D1
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Interferon-gamma
;
antagonists & inhibitors
;
Interleukin-17
;
pharmacology
;
Liver Neoplasms
;
metabolism
;
pathology
;
Mice
;
Neoplasm Proteins
;
metabolism
;
Proliferating Cell Nuclear Antigen
;
metabolism
6.Total alkaloids of Coptidis Rhizoma combined with exercise inhibits tumor growth of orthotopically transplanted 4T1 breast cancer mice by blocking cell cycle G_1/S transformation.
Bin WANG ; Shi-Yu XU ; Jia-Xin LIU ; Yuan-Feng LI ; He-Shan XU ; Bing HAN ; Jian ZHANG ; Xue-Gang LI ; Xiao-Li YE
China Journal of Chinese Materia Medica 2019;44(8):1635-1641
Breast cancer is one of the leading causes for cancer-related death among women worldwide. Coptidis Rhizoma has antibacterial,anti-inflammatory,anti-tumor and other pharmacological activities,but whether exercise could synergistically promote the role of RC in the treatment of breast cancer has not been reported. In this experiment,the effects and mechanism of total alkaloids of Coptidis Rhizoma combined with exercise on the tumor growth of orthotopically transplanted 4 T1 breast cancer were systemically studied in mice. Balb/C mice transplanted with 4 T1 cells in situ were used as models. The total alkaloids of RC(145 mg·kg-1·d-1) alone or in combination with exercise(10 m·min-1,30 min/time,5 times/week) were given for 28 days,and then the changes in body weight and tumor volume,tumor weight,interleukin-1β(IL-1β),serum estradiol(E2) content,and expression levels of estrogen receptor α(ERα),cell cycle related proteins CDK4,CDK6,cyclin D1,CDK2,and cyclin E in tumor tissues. The results showed that total alkaloids of Coptidis Rhizoma could significantly inhibit the growth of 4 T1 breast cancer in mice(P< 0. 01),and exercise significantly promoted the anti-tumor activity of total alkaloids of Coptidis Rhizoma(P<0. 01),and reduced E2 and IL-1β levels in mice. Western blot and flow cytometry showed that the total alkaloids of Coptidis Rhizoma combined with exercise could down-regulate the protein expression levels of ERα,CDK4,CDK6,cyclin D1,CDK2 and cyclin E in cancer cells,block the transformation of G1/S in 4 T1 cell cycle,and inhibit DNA synthesis in breast cancer cells. The total alkaloids of Coptidis Rhizoma combined with exercise showed synergistic effect in inhibition of tumor growth in mice with orthotopically transplanted 4 T1 breast cancer.
Alkaloids
;
pharmacology
;
Animals
;
Breast Neoplasms
;
therapy
;
Cell Cycle
;
drug effects
;
Cell Line, Tumor
;
Drugs, Chinese Herbal
;
pharmacology
;
Female
;
Mice
;
Mice, Inbred BALB C
;
Neoplasm Transplantation
;
Physical Conditioning, Animal
;
Rhizome
7.Effect of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B on proliferation,migration and cell cycle of human skin fibroblasts.
Jun SHI ; Yan-Ting WU ; Si-Yi GUO ; Gui-Tian CHEN ; Jian-Hui LAI ; Xiao-Qi XU
China Journal of Chinese Materia Medica 2019;44(2):357-363
Hypertrophic scar( HS) is a very common skin fibrosis disorder after human skin injury and wound healing. The objective of this study was to investigate the efficacy of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B( SAB-TAT-LIP) on proliferation,migration and cell cycle of human skin fibroblasts( HSF),and preliminarily evaluate its effect on prevention and treatment of HS. HSF were cultured in vitro,and MTT assay was used to detect the inhibitory effect of SAB-TAT-LIP on cell proliferation. Cell migration was assessed by Transwell chamber method and scratch method; and cell cycle change was detected by flow cytometry. In vitro cell studies showed that blank liposome basically had no toxic effect on HSF. Different concentrations of SABTAT-LIP inhibited proliferation on HSF in varying degrees after intervention for different periods in a dose and time dependent manner;meanwhile,SAB-TAT-LIP significantly inhibited the migration and invasion of HSF. At the same time,SAB-TAT-LIP could block the cell cycle at G0/G1 phase after intervention for 48 h,P<0.01 as compared with the blank control group. Conclusively,our experimental data quantitatively demonstrate that SAB-TAT-LIP has significant inhibitory effect on cells proliferation,invasion and migration,with blocking effect on G0/G1 phase. This may offer a promising therapeutic strategy for transdermal delivery in prevention and treatment of HS.
Benzofurans
;
pharmacology
;
Cell Cycle
;
Cell Movement
;
Cell Proliferation
;
Cell-Penetrating Peptides
;
Cells, Cultured
;
Drug Carriers
;
Fibroblasts
;
cytology
;
drug effects
;
Humans
;
Liposomes
;
Skin
;
cytology
8.GSK923295 as a potential antihepatocellular carcinoma agent causing delay on liver regeneration after partial hepatectomy.
Jia-Cheng TANG ; Ke WU ; Xing ZHENG ; Ming XU ; Yi DAI ; Sai-Sai WEI ; Xiu-Jun CAI
Chinese Medical Journal 2019;132(3):311-318
BACKGROUND:
The clinical trials emerged centromere protein E inhibitor GSK923295 as a promising anticancer drug, but its function in hepatocellular carcinoma (HCC) remain needs to be fully elucidated, especially as chemotherapy after hepatectomy for liver tumors. We aimed to describe anti-HCC activities of GSK923295 and compare its antiproliferative effects on liver regeneration after partial hepatectomy (PH).
METHODS:
All subjects were randomized to treatment with either vehicle or GSK923295. Antitumor activity of GSK923295 was assessed by xenograft growth assays. The C57BL/6 mice were subjected to 70% PH and the proliferation was calculated by liver coefficient, further confirmed by immunohistochemistry. The proliferation and cell cycle analysis of liver cell AML12 and HCC cells LM3, HUH7, and HepG2 were investigated using the cell counting kit-8 assay and Flow Cytometry. The chromosome misalignment and segregation in AML12 cells were visualized by immunofluorescence.
RESULTS:
Treatment with GSK923295 induced antiproliferation in HCC cell lines. It also caused delay on HCC tumor growth instead of regression both in a HCC cell line xenograft model and patient-derived tumor xenograft model. With microarray analysis, CENtromere Protein E was gradually increased in mouse liver after PH. Exposure of liver cells to GSK923295 resulted in delay on a cell cycle in mitosis with a phenotype of misaligned chromosomes and chromosomes clustered. In 70% PH mouse model, GSK923295 treatment also remarkably reduced liver regeneration in later stage, in parallel with the mitotic marker phospho-histone H3 elevation.
CONCLUSION
The anticancer drug GSK923295 causes a significant delay on HCC tumor growth and liver regeneration after PH in later stage.
Animals
;
Antineoplastic Agents
;
therapeutic use
;
Blotting, Western
;
Bridged Bicyclo Compounds, Heterocyclic
;
therapeutic use
;
Carcinoma, Hepatocellular
;
drug therapy
;
surgery
;
Cell Cycle
;
drug effects
;
Cell Proliferation
;
drug effects
;
Chromosomal Proteins, Non-Histone
;
antagonists & inhibitors
;
Electrophoresis, Polyacrylamide Gel
;
Female
;
Fluorescent Antibody Technique
;
Humans
;
Immunohistochemistry
;
Liver Neoplasms
;
drug therapy
;
surgery
;
Liver Regeneration
;
physiology
;
Mice
;
Mice, Inbred C57BL
;
Real-Time Polymerase Chain Reaction
;
Sarcosine
;
analogs & derivatives
;
therapeutic use
;
Xenograft Model Antitumor Assays
9.Interferon-γ regulates cell malignant growth via the c-Abl/HDAC2 signaling pathway in mammary epithelial cells.
Wen-Bo REN ; Xiao-Jing XIA ; Jing HUANG ; Wen-Fei GUO ; Yan-Yi CHE ; Ting-Hao HUANG ; Lian-Cheng LEI
Journal of Zhejiang University. Science. B 2019;20(1):39-48
Interferon-γ (IFN-γ) has been used to control cancers in clinical treatment. However, an increasing number of reports have suggested that in some cases effectiveness declines after a long treatment period, the reason being unclear. We have reported previously that long-term IFN-γ treatment induces malignant transformation of healthy lactating bovine mammary epithelial cells (BMECs) in vitro. In this study, we investigated the mechanisms underlying the malignant proliferation of BMECs under IFN-γ treatment. The primary BMECs used in this study were stimulated by IFN-γ (10 ng/mL) for a long term to promote malignancy. We observed that IFN-γ could promote malignant cell proliferation, increase the expression of cyclin D1/cyclin-dependent kinase 4 (CDK4), decrease the expression of p21, and upregulate the expression of cellular-abelsongene (c-Abl) and histone deacetylase 2 (HDAC2). The HDAC2 inhibitor, valproate (VPA) and the c-Abl inhibitor, imatinib, lowered the expression level of cyclin D1/CDK4, and increased the expression level of p21, leading to an inhibitory effect on IFN-γ-induced malignant cell growth. When c-Abl was downregulated, the HDAC2 level was also decreased by promoted proteasome degradation. These data suggest that IFN-γ promotes the growth of malignant BMECs through the c-Abl/HDAC2 signaling pathway. Our findings suggest that long-term application of IFN-γ may be closely associated with the promotion of cell growth and even the carcinogenesis of breast cancer.
Animals
;
Carcinogenesis/pathology*
;
Cattle
;
Cell Cycle Proteins/metabolism*
;
Cell Proliferation/drug effects*
;
Cell Transformation, Neoplastic/pathology*
;
Cells, Cultured
;
Epithelial Cells/pathology*
;
Female
;
Histone Deacetylase 2/metabolism*
;
Imatinib Mesylate/pharmacology*
;
Interferon-gamma/pharmacology*
;
Mammary Glands, Animal/pathology*
;
Mammary Neoplasms, Experimental/pathology*
;
Proto-Oncogene Proteins c-abl/metabolism*
;
Signal Transduction
;
Valproic Acid/pharmacology*
10.Effects of Nerve Growth Factor on Cardiac Fibroblasts Proliferation, Cell Cycle, Migration, and Myofibroblast Transformation.
Chinese Medical Journal 2018;131(7):813-817
BackgroundRecent research indicates that nerve growth factor (NGF) promotes cardiac repair following myocardial infarction by promoting angiogenesis and cardiomyocyte survival. The purpose of this study was to investigate the effects of NGF on cardiac fibroblasts (CFs) proliferation, cell cycle, migration, and myofibroblast transformation in vitro.
MethodsCFs were obtained from ventricles of neonatal Sprague-Dawley rats and incubated with various concentrations of NGF (0, 0.01, 0.1, 1, 10, and 100 ng/ml; 0 ng/ml was designated as the control group). Cell proliferation and cell cycle of the CFs were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry (FCM), respectively. A cell scratch wound model and transwell were carried out to observe effects of NGF on migration of CFs after 24 h of culture. Real-time polymerase chain reaction (RT-PCR) and Western blotting were used to measure α-smooth muscle actin (α-SMA) at mRNA and protein levels after CFs were incubated with various concentrations of NGF.
ResultsExpression of α-SMA measured by RT-PCR and Western blotting significantly increased in the 1 and 10 ng/ml NGF groups (P < 0.05). Absorbance values of CFs showed that NGF did not influence the proliferation of CFs (The Avalues were 0.178 ± 0.038, 0.182 ± 0.011, 0.189 ± 0.005, 0.178 ± 0.010, 0.185 ± 0.025, and 0.177 ± 0.033, respectively, in the 0, 0.01, 0.1, 1, 10, and 100 ng/ml NGF groups [P = 0.800, 0.428, 0.981, 0.596, and 0.913, respectively, compared with control group]), and FCM analysis showed that the percentage of CFs in G0/G1, S, and G2/M phases was not changed (P > 0.05). The cell scratch wound model and transwell showed that CFs migration was not significantly different (P > 0.05).
ConclusionNGF induces myofibroblast transformation but does not influence proliferation, cell cycle, or migration of CFs in vitro.
Actins ; metabolism ; Animals ; Cell Cycle ; drug effects ; physiology ; Cell Movement ; drug effects ; physiology ; Cell Proliferation ; physiology ; Cells, Cultured ; Myofibroblasts ; cytology ; drug effects ; Nerve Growth Factor ; metabolism ; pharmacology ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail