1.IgG Fc binding protein (FCGBP) as a prognostic marker of low-grade glioma and its correlation analysis with immune infiltration.
Qiao LIU ; Jiarui ZHANG ; Fuqin ZHANG ; Wei ZHANG ; Li GONG
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):686-692
Objective To identify the possibility of IgG Fc binding protein (FCGBP) acting as a prognostic marker of low-grade glioma (LGG) and its correlation with immune infiltration. Methods The expression of FCGBP was analyzed in pan-cancer using The Cancer Genome Atlas (TCGA), Genotypic tissue expression (GTEX), and China Glioma Genome Atlas (CGGA) database. Then, GSE15824 and GSE68848 datasets were selected for further verification. And gene expression Profile Interaction analysis (GEPIA) database and R language were used to analyze the relationship between FCGBP and survival prognosis. Metascape and GSEA were used for functional annotation and enrichment analysis. Finally, the expression of FCGBP gene in LGG immune microenvironment and its correlation with immune cells were analyzed by TIMER database. Results FCGBP was highly expressed in LGG tissues, indicating poor prognosis of LGG patients. Receiver operating characteristic (ROC) curve analysis and COX analysis showed that FCGBP was an independent risk factor for the prognosis of LGG. Moreover, Gene Ontology (GO) demonstrated that FCGBP was involved in cell metabolism, localization, positive, and negative regulation of biological processes, as well as biological adhesion, response to viral and microbial stimulation, and inflammation. GSEA pathway enrichment analysis showed that FCGBP was significantly correlated with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, Toll-like receptor (TLR) pathway, chemokine pathway, and P53 pathway. In addition, FCGBP expression was positively correlated with the expression of most immune cells in the immune microenvironment of LGG. Conclusion The high expression of FCGBP in LGG is a risk factor for survival and prognosis, and it is positively correlated with the expression of immune cells.
Humans
;
Prognosis
;
Glioma/genetics*
;
China
;
Gene Ontology
;
Immunoglobulin G
;
Tumor Microenvironment
;
Cell Adhesion Molecules
2.Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma.
Qian WU ; Yong-Bin WANG ; Xiao-Wen CHE ; Hui WANG ; Wei WANG
Journal of Integrative Medicine 2023;21(3):268-276
OBJECTIVE:
Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown.
METHODS:
Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting.
RESULTS:
JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML.
CONCLUSION
JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Junctional Adhesion Molecules/metabolism*
;
Kaempferols/pharmacology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Adenocarcinoma of Lung/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Lung Neoplasms/metabolism*
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
3.Analysis of CNTNAP1 gene variants in a Chinese pedigree affected with lethal congenital contracture syndrome type 7.
Ying ZHANG ; Shuya YANG ; Xiaodong HUO ; Shixiu LIAO ; Qiaofang HOU
Chinese Journal of Medical Genetics 2022;39(2):194-197
OBJECTIVE:
To explore the genetic basis for a couple who had developed polyhydramnios during three pregnancies and given birth to two liveborns featuring limb contracture, dyspnea and neonatal death.
METHODS:
Whole-exome sequencing (WES) was carried out on fetal tissue and peripheral blood samples from the couple. Suspected variants were verified by Sanger sequencing.
RESULTS:
The fetus was found to harbor homozygous nonsense c.3718C>T (p.Arg1240Ter) variants of the CNTNAP1 gene, which were respectively inherited from its mother and father. The variant was unreported previously. According to the guidelines of the American College of Medical Genetics and Genomics, the variant was predicted to be pathogenic (PVS1+PM2+PP4).
CONCLUSION
The novel homozygous nonsense variants of the CNTNAP1 gene probably underlay the lethal congenital contracture syndrome type 7 (LCCS7) in this pedigree. Above finding has enabled genetic counseling and prenatal diagnosis for the family.
Cell Adhesion Molecules, Neuronal
;
China
;
Contracture/genetics*
;
Female
;
Humans
;
Infant, Newborn
;
Mutation
;
Pedigree
;
Pregnancy
;
Whole Exome Sequencing
4.Detection of DNA methylation of HYAL2 gene for differentiating malignant from benign thyroid tumors.
Yi Fei YIN ; Hong LI ; Chun Sheng YANG ; Min Min ZHANG ; Xuan Dong HUANG ; Meng Xia LI ; Rong Xi YANG ; Zheng Dong ZHANG
Journal of Southern Medical University 2022;42(1):123-129
OBJECTIVE:
To assess the value of DNA methylation level of HYAL2 gene as a molecular marker for differential diagnosis of malignant and benign thyroid tumors.
METHODS:
DNA methylation of HYAL2 gene in tissue specimens of 190 patients with papillary thyroid cancer (PTC) and 190 age- and gender-matched patients with benign thyroid tumors was examined by mass spectrometry, and the protein expression of HYAL2 was detected immunohistochemically for another 55 pairs of patients. Logistic regression analysis was performed to calculate the odds ratio (OR) and evaluate the correlation of per 10% reduction in DNA methylation with PTC. Receiver operating characteristic (ROC) curve analysis was performed and the area under curve (AUC) was calculated to assess the predictive value of alterations in HYAL2 methylation.
RESULTS:
Hypomethylation of HYAL2_CpG_3 was significantly correlated with early-stage PTC (OR=1.51, P=0.001), even in stage I cancer (OR=1.42, P=0.007). Age-stratified analysis revealed a significantly stronger correlation between increased HYAL2_CpG_ 3 methylation and early-stage PTC in patients below 50 years than in those older than 50 years (OR: 1.89 vs 1.37, P < 0.05); ROC analysis also showed a larger AUC of 0.787 in younger patients. The results of immunohistochemistry showed that patients with PTC had significantly higher protein expressions of HYAL2 than patients with benign tumors.
CONCLUSION
The alterations of DNA methylation level of HYAL2 gene is significantly correlated with early-stage PTC, suggesting the value of DNA methylation level as a potential biomarker for differentiation of malignant from benign thyroid tumors.
Adenoma, Oxyphilic/genetics*
;
Biomarkers, Tumor/metabolism*
;
Cell Adhesion Molecules/metabolism*
;
DNA Methylation
;
GPI-Linked Proteins/metabolism*
;
Humans
;
Hyaluronoglucosaminidase/metabolism*
;
Immunohistochemistry
;
Middle Aged
;
Thyroid Cancer, Papillary/pathology*
;
Thyroid Neoplasms/pathology*
5.Prenatal diagnosis of partial deletion of NRXN1 gene with combined CNV-seq and qPCR assays.
Lixia WANG ; Panlai SHI ; Hua'nan REN ; Shuyuan XUE ; Xiangdong KONG
Chinese Journal of Medical Genetics 2022;39(11):1200-1204
OBJECTIVE:
To summarize the genetic diagnosis, low-depth copy number variation sequencing (CNV-seq) and prenatal finding in 7 fetuses with 2p16.3 deletions only involving the NRXN1 gene.
METHODS:
The 7 fetuses have all been found to have loss of heterozygosity at 2p16.3 by CNV-seq, which were verified by quantitative real-time PCR (qPCR). Specific regions of NRXN1 gene deletions were identified, and the CNVs were verified in their parents. Outcome of the pregnancies were followed up.
RESULTS:
Among 16 502 prenatal samples, 7 fetuses were found to harbor a 120 kb ~ 900 kb microdeletion in the 2p16.3 region, which yielded a prevalence of 0.424‰. The deleted region mainly involved 50 200 000-51 880 000 positions of chromosome 2 and involved only the NRXN1 gene. All of the 7 fetal CNVs were confirmed by qPCR, including 2 cases with heterozygous deletion of exons 1 to 6, 1 with heterozygous deletion of exons 1 to 19, 1 with heterozygous deletion of exons 19 to 22, and 3 with heterozygous deletion of introns 6 to 7 of the NRXN1 gene. Verification in the parents had found that one deletion was inherited from the father, 1 was from the mother, 2 cases were de novo in origin, whilst the remaining 3 had refused parental verification. After genetic counseling, one couple had elected induced abortion, 1 case has not been born yet, whilst the other 5 cases were born healthy. Follow up had identified no mental abnormalities among the children.
CONCLUSION
Seven fetuses with heterozygous 2p16.3 deletions only involving the NRXN1 gene were detected by CNV-seq. The specific deletion of the NRXN1 gene was verified by qPCR. Prenatal genetic counseling and fertility guidance has been provided to the particular family by combining the results of CNV testing, pedigree analysis and pregnancy outcome.
Female
;
Humans
;
Pregnancy
;
Calcium-Binding Proteins/genetics*
;
Cell Adhesion Molecules, Neuronal/genetics*
;
DNA Copy Number Variations
;
Nerve Tissue Proteins/genetics*
;
Neural Cell Adhesion Molecules/genetics*
;
Prenatal Diagnosis
;
Real-Time Polymerase Chain Reaction
;
Infant, Newborn
6.Impact and mechanism of CHL1 in insulin resistant adipocytes and insulin resistant mouse model induced by high glucose and high fat.
Jing TAO ; Jun LIU ; Yu Juan YUAN ; Xin SHEN ; Hui CHENG ; Guo Qing LI
Chinese Journal of Cardiology 2022;50(11):1094-1102
Objective: To investigate the role and mechanism of cell adhesion molecule L1 like (CHL1) in insulin resistant adipocytes and insulin resistant mouse model induced by high glucose and high fat. Methods: The 3T3-L1 preadipocytes were randomly divided into control group (transfected with empty vector) and CHL1 overexpression group (transfected with CHL1 vector), cells were then induced to mature adipocytes by insulin, and insulin resistance was then induced by high sugar and high fat. The glucose content was measured to determine the glucose consumption of cells from the two groups. Protein expression levels of CHL1 and glucose transporter 4 (GLUT4), serine/threonine protein kinase (AKT) phosphorylation levels were detected by Western blot (WB), the mRNA expression levels of TNF-α and IL-6 were detected by real-time quantitative PCR (RT-qPCR). 24 C57BL/6 adult male mouse were randomly divided into conventional diet group (regular group), high-fat diet group (high-fat group), empty vector overexpression+high-fat group and CHL1 overexpression+high-fat group (n=6 each group). CHL1 overexpression was induced by tail vein injection of lentivirus. Four months later, mice were sacrificed, body weight was determined, and the epididymal white adipose tissue was collect. Hematoxylin-eosin staining (HE) was used to observe the pathology of mouse epididymal white adipose tissue, the expression of CHL1 was evaluated by immunohistochemical staining(IHC), RT-qPCR was used to detect the mRNA expression levels of CHL1, TNF-α and IL-6 in mouse epididymal white adipose tissue. Results: In vitro, glucose consumption was significantly higher in the CHL1 overexpression group than in the control group (P<0.05), and the protein expressions of CHL1 and GLUT4 were higher in the CHL1 overexpression group than those in the control group (P<0.01), and the mRNA expressions levels of TNF-α and IL-6 were lower in the CHL1 overexpression group than those in the control group (P<0.01). In vivo, the body weight and epididymal white adipose tissue of mouse were higher in the high-fat group and the empty vector overexpression+high-fat group than those in the conventional group (P<0.01), which were lower in the CHL1 overexpression+high fat group than in the empty vector overexpression+high fat group (P<0.01). HE results showed that the volume of epididymal white adipocytes was larger in the high-fat group and the overexpression control+high-fat group than that in the conventional group, which was smaller in the CHL1 overexpression+high fat group than in the empty vector overexpression+high fat group (P<0.01). The mRNA expression levels of IL-6 and TNF-α in epididymal white adipose tissue of mice were higher in the high-fat group and the empty vector overexpression+high-fat group than those in the conventional group (P<0.01), which were lower in the CHL1 overexpression+high fat group than in the empty vector overexpression+high fat group (P<0.05). IHC results showed that protein expression of CHL1 in epididymal white adipose tissue was lower in the high-fat group and the empty vector overexpression+high-fat group than in regular group, which was upregulated in the CHL1 overexpression+high fat group than in the empty vector overexpression+high-fat group (P<0.01). RT-qPCR results showed that mRNA expression of CHL1 in epididymal white adipose tissue was lower in the high-fat group and the empty vector overexpression+high-fat group than in regular group (P<0.01), which was higher in the CHL1 overexpression+high fat group than in the empty vector overexpression+high fat group (P<0.01). Conclusion: Overexpression of CHL1 can improve insulin resistance in adipocytes and mouse insulin resistance model induced by high glucose and high fat, and the beneficial effects might be mediated by the inhibition of AKT activation and the reduction of related inflammatory responses.
Male
;
Mice
;
Animals
;
Insulin
;
Insulin Resistance
;
Tumor Necrosis Factor-alpha
;
Interleukin-6
;
Proto-Oncogene Proteins c-akt
;
Mice, Inbred C57BL
;
Adipocytes
;
Disease Models, Animal
;
Glucose
;
Body Weight
;
RNA, Messenger
;
Cell Adhesion Molecules
7.The value of immunohistochemical expression of Ki-67 and CD34 in differentiating ductal carcinoma in situ from ductal carcinoma in situ-like invasive breast cancer.
Xin Yuan PAN ; Jin Kun WU ; Zhi Qiang LANG ; Gui Mei QU ; Lei JIANG
Chinese Journal of Pathology 2022;51(9):838-842
Objective: To investigate the expression of Ki-67 and CD34 in the differential diagnosis of ductal carcinoma in situ (DCIS) and DCIS-like invasive breast cancer (DLIBC). Methods: A total of 100 cases of DCIS and 150 cases of DLIBC diagnosed pathologically in Yantai Yuhuangding Hospital from January 2019 to March 2022 were collected. The expression of p63, CK5/6, Ki-67 and CD34 in both groups were detected by immunohistochemical (IHC) staining and evaluated. Results: The 100 cases of DCIS included 11 cases of low-grade DCIS, 28 cases of intermediate-grade DCIS and 61 cases of high-grade DCIS. IHC staining of p63 and CK5/6 showed the myoepithelial cells around cancerous duct were complete or partial absence. Ki-67 expression showed two patterns: high expression in the basal layers and scattered expression within the tumor. Most cases showed mainly high basal expression (77/100, 77%), and the proportion of this pattern was significantly different between low grade and high grade DCIS (P<0.05). All cases showed complete CD34 expression surrounding the cancerous duct with different proportion (vascular necklace) suggested small vessels proliferation. The 150 cases of DLIBC included 142 cases of invasive ductal carcinoma (IDC) (three cases of basal-like breast cancer was included), two cases of secretory carcinoma, three cases of solid papillary carcinoma, two cases of adenoid cystic carcinoma and one case of acinar cell carcinoma. Among 142 cases of IDC, 13 cases were grade Ⅰ, 77 were grade Ⅱ and 52 were grade Ⅲ. IHC staining of p63 showed complete absence of myoepithelium. CK5/6 was negative in most cases and only positively expressed within the tumor in 3 cases of basal-like breast cancer. Ki-67 indicated a scattered expression pattern within the tumor. In most cases, CD34 immunostaining showed scattered positive blood vessels within the tumor while only two cases showed incomplete expression of CD34 around the tumor (2/150, 1.3%). The different expression patterns of Ki-67 and CD34 in DCIS and DLIBC was statistically significant (P<0.05). Conclusions: The different expression patterns of Ki-67 and CD34 are helpful to distinguish DLIBC from DCIS. The appearance of "vascular necklace" with CD34 and the high expression of Ki-67 around the cancerous duct highly support the diagnosis of DCIS, and the scattered expression pattern of CD34 supports DLIBC.
Antigens, CD34
;
Breast Neoplasms/pathology*
;
Carcinoma, Ductal, Breast/pathology*
;
Carcinoma, Intraductal, Noninfiltrating/pathology*
;
Cell Adhesion Molecules
;
Female
;
Humans
;
Immunohistochemistry
;
Ki-67 Antigen
;
Neuroblastoma
8.Integrin activation, focal adhesion maturation and tumor metastasis.
Meng-Wen HUANG ; Chang-Dong LIN ; Jian-Feng CHEN
Acta Physiologica Sinica 2021;73(2):151-159
Integrins are a large family of heterodimeric cell adhesion molecules composed of α and β subunits. Through interaction with their specific ligands, integrins mediate cell-cell and cell-extracellular matrix interactions. Via outside-in signaling, integrins can recruit cytoplasmic proteins to their intracellular domains and then cluster into supramolecular structures and trigger downstream signaling. Integrin activation is associated with a global conformation rearrangement from bent to extended in ectodomains and the separation of α and β subunit cytoplasmic domains. During cell migration, integrins regulate the focal adhesion dynamics and transmit forces between the extracellular matrix and the cell cytoskeleton. In tumor microenvironment, integrins on multiple kinds of cells could be activated, which modulates cell migration into tumor and contributes to angiogenesis and tumor metastasis. Here, we review the mechanism of integrin activation, dynamics of focal adhesions during cell migration and tumor metastasis.
Cell Adhesion
;
Cell Adhesion Molecules
;
Focal Adhesions
;
Integrins
;
Signal Transduction
9.Progress of epithelial-mesenchymal transition in respiratory system and the modulatory mechanism of cell adhesion.
Mei-Ling TAN ; Chun-Jiao LONG ; Wang JIANG ; Jin-Mei WANG ; Jiao PI ; Xiao-Qun QIN ; Yang XIANG
Acta Physiologica Sinica 2020;72(5):605-616
Epithelial-mesenchymal transition (EMT) plays an important role in the development and pathogenesis of respiratory system. Epithelial cells are characterized by well-developed, intercellular contacts, whereas EMT triggers the sequential destabilization of cell-cell adhesive junctions. The dynamic remodeling of the epithelial cell adhesion molecules is important for maintaining the integrity and normal function of epithelium. This paper reviews the research progress of EMT in lung development, lung injury repair and chronic lung diseases, and summarizes the effect of cell junctions and cell adhesion molecules on EMT molecular events.
Cell Adhesion
;
Cell Adhesion Molecules
;
Epithelial Cells
;
Epithelial-Mesenchymal Transition
;
Respiratory System
10.Progress on the role of synaptic cell adhesion molecules in stress.
Acta Physiologica Sinica 2020;72(2):220-226
Synaptic cell adhesion molecules (CAMs) are a type of membrane surface glycoproteins that mediate the structural and functional interactions between pre- and post-synaptic sites. Synaptic CAMs dynamically regulate synaptic activity and plasticity, and their expression and function are modulated by environmental factors. Synaptic CAMs are also important effector molecules of stress response, and mediate the adverse impact of stress on cognition and emotion. In this review, we will summarize the recent progress on the role of synaptic CAMs in stress, and aim to provide insight into the molecular mechanisms and drug development of stress-related disorders.
Cell Adhesion
;
Cell Adhesion Molecules
;
physiology
;
Humans
;
Neuronal Plasticity
;
Stress, Physiological
;
Stress, Psychological
;
Synapses

Result Analysis
Print
Save
E-mail