1.Expression of cation chloride cotransporter (NKCC1/KCC2) in brain tissue of children with focal cortical dysplasia type Ⅱ.
Yan LI ; Yun Lin LI ; Yong Ling LIU ; Jing FU ; Wei Wei ZHANG ; Yue Shan PIAO
Chinese Journal of Pathology 2022;51(11):1123-1128
Objective: To investigate the expression of cation chloride cotransporter (NKCC1/KCC2) in the neurons from cerebral lesions of children with focal cortical dysplasia (FCD) type Ⅱ, to provide a morphological basis for revealing the possible mechanism of epilepsy. Methods: Eight cases of FCD type Ⅱ diagnosed at Beijing Haidian Hospital, Beijing, China and 12 cases diagnosed at Xuanwu Hospital, Capital Medical University, Beijing, China from February 2017 to December 2019 were included. The expression of NKCC1 and KCC2 in FCD type Ⅱa and FCD type Ⅱb was detected using immunohistochemistry and double immunohistochemical stains. The average optical density of NKCC1 in dysmorphic neurons and normal neurons was also determined using immunohistochemical staining in FCD type Ⅱa (10 cases). Results: The patients were all younger than 14 years of age. Ten cases were classified as FCD type IIa, and 10 cases as FCD type Ⅱb. NKCC1 was expressed in the cytoplasm of normal cerebral cortex neurons and KCC2 expressed on cell membranes. In dysmorphic neurons of FCD type Ⅱa, expression of NKCC1 increased, which was statistically higher than that of normal neurons (P<0.01). Aberrant expression of KCC2 in dysmorphic neurons was also noted in the cytoplasm. In the FCD Ⅱb type, the expression pattern of NKCC1/KCC2 in dysmorphic neurons was the same as that of FCD type Ⅱa. The aberrant expression of NKCC1 in balloon cells was negative or weakly positive on the cell membrane, while the aberrant expression of KCC2 was absent. Conclusions: The expression pattern of NKCC1/KCC2 in dysmorphic neurons and balloon cells is completely different from that of normal neurons. The NKCC1/KCC2 protein-expression changes may affect the transmembrane chloride flow of neurons, modify the effect of inhibitory neurotransmitters γ-aminobutyric acid and increase neuronal excitability. These effects may be related to the occurrence of clinical epileptic symptoms.
Child
;
Humans
;
Brain/pathology*
;
Cations/metabolism*
;
Chlorides/metabolism*
;
Epilepsy/metabolism*
;
Malformations of Cortical Development, Group I/metabolism*
;
Solute Carrier Family 12, Member 2/metabolism*
;
Symporters/metabolism*
2.Downregulation of inwardly rectifying potassium channel 5.1 expression in C57BL/6J cochlear lateral wall.
Chun-Chen PAN ; Han-Qi CHU ; Yan-Bing LAI ; Yan-Bo SUN ; Zhi-Hui DU ; Yun LIU ; Jin CHEN ; Ting TONG ; Qing-Guo CHEN ; Liang-Qiang ZHOU ; Dan BING ; Yan-Ling TAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):406-409
Age-related hearing loss (AHL) is one of the most common sensory disorders among elderly persons. The inwardly rectifying potassium channel 5.1 (Kir5.1) plays a vital role in regulating cochlear K(+) circulation which is necessary for normal hearing. The distribution of Kir5.1 in C57BL/6J mice cochleae, and the relationship between the expression of Kir5.1 and the etiology of AHL were investigated. Forty C57BL/6J mice were randomly divided into four groups at 4, 12, 24 and 52 weeks of age respectively. The location of Kir5.1 was detected by immunofluorescence technique. The mRNA and protein expression of Kir5.1 was evaluated in mice cochleae using real-time polymerase-chain reactions (RT-PCR) and Western blotting respectively. Kir5.1 was detected in the type II and IV fibrocytes of the spiral ligament in the cochlear lateral wall of C57BL/6J mice. The expression levels of Kir5.1 mRNA and protein in the cochleae of aging C57BL/6J mice were down-regulated. It was suggested that the age-related decreased expression of Kir5.1 in the lateral wall of C57BL/6J mice was associated with hearing loss. Our results indicated that Kir5.1 may play an important role in the pathogenesis of AHL.
Aging
;
genetics
;
metabolism
;
Animals
;
Cations, Monovalent
;
Fluorescent Antibody Technique
;
Gene Expression Regulation
;
Ion Transport
;
Mice
;
Mice, Inbred C57BL
;
Microtomy
;
Potassium
;
metabolism
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
metabolism
;
Presbycusis
;
genetics
;
metabolism
;
physiopathology
;
RNA, Messenger
;
genetics
;
metabolism
;
Spiral Ligament of Cochlea
;
metabolism
;
physiopathology
;
ultrastructure
3.Novel cationic liposome loading siRNA inhibits the expression of hepatitis B virus HBx gene.
Ya-Juan WANG ; Yu-Qing GAO ; Bei-Bei NI ; Chan LI ; Tian-Jiao WEN ; Yan-Ling WANG ; Jia WANG ; Chun-Lei LI
Acta Pharmaceutica Sinica 2014;49(9):1326-1330
In order to solve the problem of selection and in vivo delivery problem in siRNA treatment, hepatitis B virus (HBV) HBx gene which could be targeted by siRNA was studied. The siRNA expression plasmid which specific inhibits HBx expression was obtained by in vitro selection via a dual-luciferase plasmid including HBx-Fluc fusion protein expression domain. The selected siRNA expression plasmid was then encapsulated in PEG-modified cationic liposome, which was devoted into pharmacodynamic studies at both cellular and animal level. The results illustrated that the cationic liposome which encapsulated siRNA expression plasmid could effectively inhibit HBx gene expression both in vitro and in vivo.
Cations
;
Gene Expression Regulation, Viral
;
drug effects
;
Hepatitis B virus
;
genetics
;
Liposomes
;
chemistry
;
Plasmids
;
RNA, Small Interfering
;
chemistry
;
Trans-Activators
;
genetics
;
metabolism
4.Progress in the study of multidrug and toxin extrusion proteins.
Acta Pharmaceutica Sinica 2014;49(8):1105-1110
Mammal multidrug and toxin extrusion proteins (MATEs) play an important role in the transport of organic cations in the body. MATEs mediate the final excretion step for multiple organic cation drug used clinically and important endogenous substances. This article reviews the discovery, type, gene coding and polymorphism, body distribution, classification of substrates and inhibitors and their research method of MATEs. The article also discusses the major research significance of MATEs with examples.
Animals
;
Biological Transport
;
Cations
;
Organic Cation Transport Proteins
;
metabolism
;
Polymorphism, Genetic
5.Influence of cationic cyclopeptide on microstructure and permeability of Caco-2 cell membrane.
Xiao-Hui LI ; Ming-Ming CHANG ; Qing WANG ; Yu-Ming SUN ; Yang LIU
Acta Pharmaceutica Sinica 2014;49(7):1062-1068
The microstructure of cationic cyclopeptide (TD-34) treated Caco-2 cell membrane was observed, and we discussed the relationship between membrane structure and insulin transmembrane permeability. Atomic force microscope (AFM) was used to observe living cell membrane in air condition and tapping mode. Results showed that the surface of Caco-2 cell membrane treated with TD-34 lost its smoothness and nearly doubled its roughness. Apparent permeability coefficients (P(app)) of insulin in Caco-2 cell monolayers increased 2.5 times. In conclusion, AFM can be used to observe microstructure of cationic cyclopeptide treated cell membrane and cationic cyclopeptide enhanced insulin delivery across Caco-2 cell membrane by increasing membrane fluidity.
Caco-2 Cells
;
Cations
;
Cell Membrane
;
drug effects
;
Cell Membrane Permeability
;
drug effects
;
Humans
;
Insulin
;
metabolism
;
Membrane Fluidity
;
drug effects
;
Microscopy, Atomic Force
;
Peptides, Cyclic
;
pharmacology
6.TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts.
Jin Seok WOO ; Chung Hyun CHO ; Do Han KIM ; Eun Hui LEE
Experimental & Molecular Medicine 2010;42(9):614-627
During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca2+ channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca2+-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca2+ release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca2+-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without alpha1SDHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in alpha1SDHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or alpha1SDHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca2+ content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes.
Animals
;
Calcium/metabolism
;
Calcium Channels/metabolism
;
Calcium Channels, L-Type/genetics/metabolism
;
Cations/metabolism
;
*Cell Differentiation
;
*Cell Proliferation
;
Cells, Cultured
;
Excitation Contraction Coupling
;
Gene Knockdown Techniques
;
Membrane Potentials
;
Mice
;
Muscle Fibers, Skeletal/*metabolism
;
Muscle Proteins/metabolism
;
Myoblasts, Skeletal/*metabolism
;
Ryanodine Receptor Calcium Release Channel/metabolism
;
Sarcoplasmic Reticulum/*physiology
;
Synaptophysin/metabolism
;
TRPC Cation Channels/genetics/*metabolism
;
Transient Receptor Potential Channels/metabolism
7.Preparation and in vitro and in vivo study of antisense oligodeoxynucleotides-loaded cationic liposomes.
Yang LIU ; Zhen-zhong ZHANG ; Kun LI ; Qian MEI
Acta Pharmaceutica Sinica 2009;44(11):1273-1277
The aim of the paper is to prepare stable antisense oligodeoxynucleotides-loaded cationic liposomes and evaluate the transfection efficiency of asODN to MCF-7 oophoroma cells and study their distribution to different tissues in mice. Antisense oligodeoxynucleotides (asODN)-loaded cationic liposomes were prepared by a thin film-adsorption-lyophilization method which is simple and can overcome crucial pharmaceutical defects (e.g. instability) of liposomes during storage. The morphology was investigated by transmission electron microscope. The size and surface charge of the liposomes were determined by laser particle analyter. The dissociated ligodeoxynucleotides were separated from the liposomes by sephadex column and the entrapment efficiency was determined by using an ultraviolet photometer. Trehalose, mannitol, and glycine were suitable for lyophilization especially trehalose. The resulting liposomes were global microcapsule in a narrow particle size with a mean diameter of 175 nm and 320 nm before and after lyophilization, and a high zeta potentials of +32 mV. The dissociated asODN were separated from the liposomes by sephadex G-50 column and the entrapment coefficient of asODN was 88.4% pre and 83.2% post-lyophilization separately for trehalose. The growth of MCF-7 oophoroma cells were inhibited in vitro obviously (P < 0.05) and transfection efficiency of asODN was 18%, 26%, 44% after 2 h, 4 h and 8 h, respectively. The formulation and method can be used to prepare stable cationic liposomes which can effectively inhibit the growth of MCF-7 oophoroma cells and obtain a high transfection efficiency. This system can improve distribution amount of asODN to tissues especially tumors in mice.
Animals
;
Breast Neoplasms
;
metabolism
;
pathology
;
Cations
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Drug Carriers
;
Female
;
Freeze Drying
;
Humans
;
Liposomes
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Neoplasm Transplantation
;
Oligodeoxyribonucleotides, Antisense
;
chemistry
;
genetics
;
Particle Size
;
Transfection
8.Transfection efficiency comparison of cationic liposome-DNA complexes and lipid-protamine-DNA complexes in vitro.
Xun SUN ; Ling TIAN ; Yu NIE ; Zhirong ZHANG ; Jiao LU ; Yuquan WEI
Journal of Biomedical Engineering 2007;24(1):191-195
After the preparation of cationic liposomes composed of DDAB/DOPE, cationic liposome-DNA complexes and lipid-polycation-DNA (LPD) complexes were formulated, respectively. Gel retardation assay was employed to select appropriate ratios of cationic liposomes to DNA of the liposome-DNA complexes. The morphology of LPD and liposome-DNA complexes was observed by transmission electron microscopy. The diameter and surface charge of LPD and liposome-DNA complexes were measured by photon correlation spectroscopy (PCS). Their transfection efficiencies in Chang cells and HepG2 cells were evaluated by beta-gal assay kit. It was found that LPD and liposome-DNA complexes had a regular spherical surface. However, compared with liposome-DNA complexes, LPD had rather smaller particle size and much higher transfection efficiency in Chang cells and HepG2 cells in vitro. LPD could be prepared easily with small particle sizes and high transfection activities. LPD may be a good non-viral gene delivery vehicle for applications in gene delivery.
Cations
;
DNA
;
genetics
;
Genetic Therapy
;
Genetic Vectors
;
Humans
;
Lipids
;
chemistry
;
Liposomes
;
chemistry
;
Liver Neoplasms
;
metabolism
;
pathology
;
Protamines
;
chemistry
;
Transfection
;
Tumor Cells, Cultured
9.Evidence for a major role of Mg2+ in VEGF165-mediated angiogenesis.
Bing-zhe HONG ; Hai-nan PIAO ; Sheng-fan LI ; Hua PIAO ; Long JIN ; Ping-an CAO
Chinese Journal of Cardiology 2007;35(3):260-264
OBJECTIVEThe effect of vascular endothelial growth factor(165) (VEGF(165)) on intracellular free magnesium ([Mg(2+)](i)) and the relationship between Mg(2+) and angiogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study.
METHODS[Mg(2+)](i) in HUVECs loaded with fluorescent magnesium indicator mag-fura-2 were quantitatively detected with the use of intracellular cation measurement system. HUVECs were obtained from normal fetus and cultured in M199 with 0.2 fetal bovine serum. The angiogenesis effects of VEGF(165) were observed in presence of 0 mmol/L, 1 mmol/L or 2 mmol/L of extracellular Mg(2+).
RESULTSVEGF(165) significantly increased [Mg(2+)](i) in a dose-dependent manner independent of extracellular Mg(2+), Na(+) and Ca(2+) and this effect could be blocked by pretreatment with VEGF(165) receptor-2 (KDR) inhibitor (SU1498). The angiogenesis induced by VEGF(165) was significantly inhibited cells with 0 mmol/L extracellular Mg(2+), the angiogenesis effects of VEGF(165) were similar in cells with 1 mmol/L and 2 mmol/L extracellular Mg(2+) and these effects could be blocked by SU1498.
CONCLUSIONSThese results suggest that the [Mg(2+)](i) increase induced by VEGF(165) originates from intracellular Mg(2+) pools and promotes angiogenesis via KDR-dependent signaling pathways.
Cations, Divalent ; Cells, Cultured ; Endothelial Cells ; metabolism ; Humans ; Magnesium ; metabolism ; Neovascularization, Physiologic ; Signal Transduction ; Vascular Endothelial Growth Factor A ; metabolism ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism
10.Preparation and gene expression of transferrin modified gene loaded procationic liposomes.
Zhi-rong ZHONG ; Ji LIU ; Yong DENG ; Zhi-rong ZHANG ; Qing-guo SONG ; Qin HE
Acta Pharmaceutica Sinica 2007;42(2):216-220
A novel transferrin modified non-viral gene delivery system Tf-PLPD was developed and the related characteristics was investigated. Blank procationic liposomes were prepared by film dispersion-filteration method. PLPD was prepared as follows by first mixing the plasmid DNA and protamine together, then the resulted polyplexes were incubated for 10 min at room temperature, followed by addition of preformed blank procationic liposomes. Transferrin was adsorbed at the surface of PLPD via electrostatic interactions to form Tf-PLPD. Central composite design (CCD) was employed to optimize the formulation. The HepG2 cells were transfected using lacZ as reporter gene and characteristics such as the morphology, the mean particle size, the zeta potential and the transfection efficiency in HepG2 cells were further investigated by different methods. The resulting PLPD had a regular spherical surface with an average size of (228. 9 +/- 8. 0) nm (polydispersity index, PDI = 0. 122 +/- 0. 02, n = 3) , a zeta potential of ( - 25. 08 +/-2. 50) mV (n = 3) and a transfection efficiency of (12. 18 +/- 3. 80) mU x mg(-1) (protein). The Tf-PLPD had an average size of (240 +/- 12) nm (polydispersity index, PDI = 0. 150 +/- 0. 03, n = 3), a zeta potential of ( - 24. 10 +/- 2. 50) mV ( n = 3) and a transfection efficiency of (24. 26 +/- 2. 60) mU x mg(-1) (protein) , 20 times greater than that of the naked plasmid DNA. The presence of serum didn' t affect the tansfection activity of PLPD or Tf-PLPD. Compared to one kind of cationic liposomes (liposome-protamine-DNA, LPD), the PLPD and Tf-PLPD had much less cytotoxicity to three hepatic cell lines (including HepG2, SMMC7721 and Chang' s normal hepatocyte). The results indicated that the Tf-PLPD is a perspective non-viral vector for gene delivery systems.
Cations
;
chemistry
;
Cell Line
;
Cell Line, Tumor
;
Cell Survival
;
DNA
;
chemistry
;
genetics
;
Hepatocytes
;
cytology
;
metabolism
;
Humans
;
Liposomes
;
chemistry
;
Liver Neoplasms
;
genetics
;
pathology
;
Particle Size
;
Plasmids
;
chemistry
;
genetics
;
Protamines
;
chemistry
;
Transfection
;
methods
;
Transferrin
;
chemistry
;
genetics

Result Analysis
Print
Save
E-mail