1.Variations of glucose content in Massa Medicata Fermentata during processing based on quantitative proton nuclear magnetic resonance.
Ya-Ling SHI ; Lu-Yu SHAN ; Jing-Jing YANG ; Miao-Miao JIANG ; Hui-Juan YU ; Yue-Fei WANG ; Xin CHAI
China Journal of Chinese Materia Medica 2023;48(23):6396-6402
A quantitative proton nuclear magnetic resonance(qHNMR) method was established to determine the glucose content in commercially available Massa Medicata Fermentata(MMF) products and explore the variations of glucose content in MMF products during processing. The qHNMR spectrum of MMF in deuterium oxide was obtained with 2,2,3,3-d_4-3-(trimethylsilyl) propionate sodium salt as the internal standard substance. With the doublet peaks of terminal hydrogen of glucose with chemical shift at δ 4.65 and δ 5.24 as quantitative peaks, the content of glucose in MMF samples was determined. The glucose content showed a good linear relationship within the range of 0.10-6.44 mg·mL~(-1). The relative standard deviations(RSDs) of precision, stability, repeatability, and recovery for determination were all less than 2.3%. The glucose content varied in different commercially available MMF samples, which were associated with the different fermentation days, wheat bran-to-flour ratios, and processing methods. The glucose content in MMF first increased and then decreased over the fermentation time. Compared with the MMF products fermented with wheat bran or flour alone, the products fermented with both wheat bran and flour had increased glucose. The glucose content of bran-fried MMF was slightly lower than that of raw MMF, while the glucose content in charred MMF was extremely low. In conclusion, the qHNMR method established in this study is simple, fast, and accurate, serving as a new method for determining the glucose content in MMF. Furthermore, this study clarifies the variations of glucose content in MMF during processing, which can not only indicate the processing degree but also provide a scientific basis for revealing the fermentation mechanism and improving the quality control of MMF.
Protons
;
Drugs, Chinese Herbal/chemistry*
;
Dietary Fiber
;
Magnetic Resonance Spectroscopy
2.Research on Logic Design of Proton Treatment Control System.
Zhuofan CAI ; Rong XIE ; Jianchun DENG ; Zhiyong YANG
Chinese Journal of Medical Instrumentation 2023;47(4):370-376
The proton treatment control system is the supporting software of the proton therapy device, which specifically coordinates and controls the status and work of each subsystem. In this study, the software architecture and hardware implementation of the proton treatment control system was developed and built a foundation for the overall debugging. Using C# programming language and WPF programming techniques, TCP network communication protocol specified by the proton treatment technical document and MVVM pattern in Windows system, the logic design and implementation of each level were studied. Meanwhile, the communication interface between the subsystems under TCP communication protocol was agreed. The logic design and research of the setup field and treatment field were carried out. And the User Interface was designed and developed using the above technology. The program realizes the communication and interaction between the proton treatment control system and each subsystem, so as to control and monitor the whole treatment process. The proton treatment control system provides a software basis for the remote overall debugging and on-line monitor and control of proton treatment device.
Protons
;
User-Computer Interface
;
Software
;
Computers
;
Logic
3.Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors.
Andrii CHERNINSKYI ; Maksim STOROZHUK ; Oleksandr MAXIMYUK ; Vyacheslav KULYK ; Oleg KRISHTAL
Neuroscience Bulletin 2023;39(5):845-862
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Humans
;
Acid Sensing Ion Channels
;
Protons
;
Neurons
;
Brain Diseases
;
Adenosine Triphosphate/physiology*
4.Role of the Voltage-Gated Proton Channel Hv1 in Nervous Systems.
Yu SHEN ; Yuncheng LUO ; Ping LIAO ; Yunxia ZUO ; Ruotian JIANG
Neuroscience Bulletin 2023;39(7):1157-1172
Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.
Animals
;
Protons
;
Ion Channels/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Brain/metabolism*
;
NADPH Oxidases
;
Mammals/metabolism*
5.Progress in Clinical Research of Amide Proton Transfer Imaging.
Xuan JIA ; Can LAI ; Xiaohui MA
Chinese Journal of Medical Instrumentation 2020;44(2):185-188
As a new type of magnetic resonance imaging method, amide proton transfer (APT) imaging can detect the chemical exchange characteristics of free proprotein, peptide amide proton and water proton by water signal changes, reflecting the changes of protein and pH in tissues. In recent years, clinical research on brain tumors, multiple sclerosis, hepatic encephalopathy and cervical cancer have been carried out. It is a radiation-free and non-invasive new magnetic resonance molecular imaging technology. This study briefly reviews the principle of APT technology and its clinical application, and prospects its application prospects in children's abdominal tumors.
Abdomen/pathology*
;
Amides
;
Child
;
Humans
;
Magnetic Resonance Imaging
;
Neoplasms/diagnostic imaging*
;
Protons
6.Analysis of Key Points of Radiation Sources in Proton and Carbon Ion Radiotherapy Facilities in Shanghai.
Xiaowa WANG ; Ning DU ; Lan WANG
Chinese Journal of Medical Instrumentation 2020;44(6):476-480
Compared with conventional high energy X-ray radiotherapy, proton/carbon ion has obvious advantages because of its Bragg peak dose distribution. However, proton heavy ion facility has complex structure, high energy and various radiation types due to various nuclear reaction processes, the radiation protection safety brought by the operation of facilities has gradually attracted attention. Taking the proton/carbon ion radiotherapy facility of Shanghai Proton and Heavy Ion Center as an example, the author mainly analyzed the operation principle of proton/carbon ion treatment facility, the basis of radiation protection, analysis of key radiation source points, etc., so as to provide theoretical support and experience for radiation protection.
China
;
Heavy Ion Radiotherapy
;
Heavy Ions
;
Occupational Exposure/prevention & control*
;
Protons
;
Radiation Protection
;
Radiotherapy
7.Arterial Spin Labelling Perfusion, Proton MR Spectroscopy and Susceptibility-Weighted MR Findings of Acute Necrotizing Encephalopathy: a Case Report
Hwanwoong KWON ; Dae Seob CHOI ; Jungho JANG
Investigative Magnetic Resonance Imaging 2019;23(2):157-161
In this study, we report arterial spin labelling perfusion, proton MR spectroscopy and susceptibility-weighted MR findings of acute necrotizing encephalopathy in a child with rotavirus infection.
Brain Diseases
;
Child
;
Humans
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy
;
Perfusion
;
Protons
;
Rotavirus Infections
8.Multi-Parametric Quantitative MRI for Measuring Myelin Loss in Hyperglycemia-Induced Hemichorea
Sung Won YOUN ; Oh Dae KWON ; Moon Jung HWANG
Investigative Magnetic Resonance Imaging 2019;23(2):148-156
Hyperglycemia-induced hemichorea (HGHC) is a rare but characteristic hyperkinetic movement disorder involving limbs on one side of the body. In a 75-year-old woman with a left-sided HGHC, conventional brain MR imaging showed very subtle T1-hyperintensity and unique gadolinium enhancement in the basal ganglia contralateral to movements. Multi-parametric MRI was acquired using pulse sequence with quantification of relaxation times and proton density by multi-echo acquisition. Myelin map was reconstructed based on new tissue classification modeling. In this case report of multi-parametric MRI, quantitative measurement of myelin change related to HGHC in brain structures and its possible explanations are presented. This is the first study to demonstrate myelin loss related to hyperglycemic insult in multi-parametric quantitative MR imaging.
Aged
;
Basal Ganglia
;
Brain
;
Classification
;
Extremities
;
Female
;
Gadolinium
;
Humans
;
Hyperglycemia
;
Hyperkinesis
;
Magnetic Resonance Imaging
;
Movement Disorders
;
Myelin Sheath
;
Protons
;
Relaxation
9.Feasibility of Spin-Echo Echo-Planar Imaging MR Elastography in Livers of Children and Young Adults
Jin Kyem KIM ; Haesung YOON ; Mi Jung LEE ; Myung Joon KIM ; Kyunghwa HAN ; Hong KOH ; Seung KIM ; Seok Joo HAN ; Hyun Joo SHIN
Investigative Magnetic Resonance Imaging 2019;23(3):251-258
PURPOSE: To assess the feasibility of the use of spin-echo echo-planar imaging (SE-EPI) magnetic resonance elastography (MRE) in livers of children and young adults. MATERIALS AND METHODS: Patients (≤ 20 years old) who underwent 3T SE-EPI MRE were included retrospectively. Subjects were divided into three groups according to the purpose of the liver MRI: suspicion of fatty liver or focal fat deposition in the liver (FAT group), liver fibrosis after receiving a Kasai operation from biliary atresia (BA group), and hepatic iron deposition after receiving chemotherapy or transfusions (IRON group). Technical failure of MRE was defined when a stiffness map showed no pixel value with a confidence index higher than 95%, and the patients were divided as success and failure groups accordingly. Clinical findings including age, gender, weight, height, and body mass index and magnetic resonance imaging results including proton density fat fraction (PDFF), T2*, and MRE values were assessed. Factors affecting failure of MRE were evaluated and the image quality in wave propagation image and stiffness map was evaluated using the appropriate scores. RESULTS: Among total 240 patients (median 15 years, 211 patients in the FAT, 21 patients in the BA, and 8 patients in the IRON groups), technical failure was noted in six patients in the IRON group (6/8 patients, 75%), while there were no failures noted in the FAT and BA groups. These six patients had T2* values ranging from 0.9 to 3.8 ms. The image quality scores were not significantly different between the FAT and BA groups (P > 0.999), while the scores were significantly lower in the IRON group (P < 0.001). CONCLUSION: The 3T SE-EPI MRE in children and young adults had a high technical success rate. The technical failure was occurred in children with decreased T2* value (≤ 3.8 ms) from iron deposition.
Biliary Atresia
;
Body Mass Index
;
Child
;
Drug Therapy
;
Echo-Planar Imaging
;
Elasticity Imaging Techniques
;
Fatty Liver
;
Humans
;
Iron
;
Liver Cirrhosis
;
Liver
;
Magnetic Resonance Imaging
;
Protons
;
Retrospective Studies
;
Young Adult
10.Delafloxacin, a New Miracle in Antibiotics Armamentarium for Bacterial Infections
Mohammad Saydur RAHMAN ; Young Sang KOH
Journal of Bacteriology and Virology 2019;49(1):39-43
The persistent antibiotics resistant issue has emerged as an influencing factor to deteriorate community health. So, new antibiotics development is urgent for the treatment of bacterial infections. Alternatively, delafloxacin is an eminent new fluoroquinolone, and chemically distinct from older fluoroquinolones. There is lack of proton substituent that indicates the poor acidic property of the drug. It also has a good intracellular penetration capacity that increases the intensity of the bactericidal property in acidic environment. Delafloxacin is a super active drug against the skin and soft tissue infections (SSTIs) and community-acquired respiratory tract infections. Delafloxacin also exhibits better efficacy against pathogens which are resistant to other fluoroquinolones, such as methicillin-resistant Staphylococcus aureus (MRSA). Delafloxacin received approval from the US Food and Drug Administration (FDA) for the treatment of acute bacterial skin and skin structure infections (ABSSI). Phase III clinical trial among patients with community-acquired pneumonia (CAP) is ongoing to evaluate the effectiveness of delafloxacin. From the aforementioned arguments, delafloxacin will be a prominent candidate for the upcoming antibacterial agent. Similarly, delafloxacin can be a crucial drug to fight against ABSSI.
Anti-Bacterial Agents
;
Bacterial Infections
;
Fluoroquinolones
;
Humans
;
Methicillin-Resistant Staphylococcus aureus
;
Pneumonia
;
Protons
;
Respiratory Tract Infections
;
Skin
;
Soft Tissue Infections
;
United States Food and Drug Administration

Result Analysis
Print
Save
E-mail