1.Lactobacillus brevis BIOTECH 1766 attenuates oxidative stress and histopathological changes following aluminum poisoning in ICR mice
Gerwin Louis T. Dela Torre ; Richelle Ann M. Manalo ; Szarina Krisha K. Ko ; Erna C. Arollado ; Arlene A. Samaniego
Acta Medica Philippina 2024;58(19):56-63
OBJECTIVE
The aim of this study was to investigate the protective effects of Lactobacillus brevis BIOTECH 1766 against oxidative damage in the brain, liver, and kidneys induced by aluminum (Al) poisoning in ICR mice.
METHODSTwenty mice were divided into four groups (n = 5): (I) control, (II) Al, (III) citric acid (CA), and (IV) L. brevis BIOTECH 1766 group. A 14-day treatment period was implemented, wherein groups I and II received sterile water, while groups III and IV received 10 mg/kg bw of CA and 1 x 109 cfu/kg bw of L. brevis BIOTECH 1766, respectively. On day 15, all except the control group received a single oral dose of 1438 mg/kg bw of AlCl3. 6H2O. After 24 h, mice were euthanized to collect the brain, liver, and kidneys for the oxidative stress marker analyses and histopathological examination.
RESULTSAcute intoxication of Al led to a significant increase in tissue malondialdehyde (MDA) and a significant decrease in the tissue's reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Mice pretreated with CA or L. brevis BIOTECH 1766 have markedly reduced CAT activity in the liver, and SOD in all three organs. Extensive organ injuries were also prevented by CA and L. brevis BIOTECH 1766 pretreatment, with the latter providing better protection against liver damage.
CONCLUSIONThe findings showed that L. brevis BIOTECH 1766 provides a protective effect against acute Al poisoning in mice by ameliorating oxidative damage in the brain, liver, and kidneys.
Animals ; Catalase ; Lactobacillus Brevis ; Oxidative Stress ; Superoxide Dismutase
2.Exposure to Electromagnetic Fields from Mobile Phones and Fructose consumption Coalesce to Perturb Metabolic Regulators AMPK/SIRT1-UCP2/FOXO1 in Growing Rats.
Ruchi TRIPATHI ; Sanjay Kumar BANERJEE ; Jay Prakash NIRALA ; Rajani MATHUR
Biomedical and Environmental Sciences 2023;36(11):1045-1058
OBJECTIVE:
In this study, the combined effect of two stressors, namely, electromagnetic fields (EMFs) from mobile phones and fructose consumption, on hypothalamic and hepatic master metabolic regulators of the AMPK/SIRT1-UCP2/FOXO1 pathway were elucidated to delineate the underlying molecular mechanisms of insulin resistance.
METHODS:
Weaned Wistar rats (28 days old) were divided into 4 groups: Normal, Exposure Only (ExpO), Fructose Only (FruO), and Exposure and Fructose (EF). Each group was provided standard laboratory chow ad libitum for 8 weeks . Additionally, the control groups, namely, the Normal and FruO groups, had unrestricted access to drinking water and fructose solution (15%), respectively. Furthermore, the respective treatment groups, namely, the ExpO and EF groups, received EMF exposure (1,760 MHz, 2 h/day x 8 weeks). In early adulthood, mitochondrial function, insulin receptor signaling, and oxidative stress signals in hypothalamic and hepatic tissues were assessed using western blotting and biochemical analysis.
RESULT:
In the hypothalamic tissue of EF, SIRT1, FOXO 1, p-PI3K, p-AKT, Complex III, UCP2, MnSOD, and catalase expressions and OXPHOS and GSH activities were significantly decreased ( P < 0.05) compared to the Normal, ExpO, and FruO groups. In hepatic tissue of EF, the p-AMPKα, SIRT1, FOXO1, IRS1, p-PI3K, Complex I, II, III, IV, V, UCP2, and MnSOD expressions and the activity of OXPHOS, SOD, catalase, and GSH were significantly reduced compared to the Normal group ( P < 0.05).
CONCLUSION
The findings suggest that the combination of EMF exposure and fructose consumption during childhood and adolescence in Wistar rats disrupts the closely interlinked and multi-regulated crosstalk of insulin receptor signals, mitochondrial OXPHOS, and the antioxidant defense system in the hypothalamus and liver.
Humans
;
Rats
;
Animals
;
Adult
;
Rats, Wistar
;
Fructose/metabolism*
;
Catalase
;
Receptor, Insulin/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Electromagnetic Fields/adverse effects*
;
Sirtuin 1/metabolism*
;
Cell Phone
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Forkhead Box Protein O1/metabolism*
;
Uncoupling Protein 2
3.Preparation and catalytic properties of catalase-inorganic hybrid nanoflowers.
Jiao PANG ; Mengtong JIANG ; Yuxin LIU ; Mingyu LI ; Jiaming SUN ; Conggang WANG ; Xianzhen LI
Chinese Journal of Biotechnology 2022;38(12):4705-4718
Catalase is widely used in the food, medical, and textile industries. It possesses exceptional properties including high catalytic efficiency, high specificity, and environmental friendliness. Free catalase cannot be recycled and reused in industry, resulting in a costly industrial biotransformation process if catalase is used as a core ingredient. Developing a simple, mild, cost-effective, and environmentally friendly approach to immobilize catalase is anticipated to improve its utilization efficiency and enzymatic performance. In this study, the catalase KatA derived from Bacillus subtilis 168 was expressed in Escherichia coli. Following separation and purification, the purified enzyme was prepared as an immobilized enzyme in the form of enzyme-inorganic hybrid nanoflowers, and the enzymatic properties were investigated. The results indicated that the purified KatA was obtained through a three-step procedure that included ethanol precipitation, DEAE anion exchange chromatography, and hydrophobic chromatography. Then, by optimizing the process parameters, a novel KatA/Ca3(PO4)2 hybrid nanoflower was developed. The optimum reaction temperature of the free KatA was determined to be 35 ℃, the optimum reaction temperature of KatA/Ca3(PO4)2 hybrid nanoflowers was 30-35 ℃, and the optimum reaction pH of both was 11.0. The free KatA and KatA/Ca3(PO4)2 hybrid nanoflowers exhibited excellent stability at pH 4.0-11.0 and 25-50 ℃. The KatA/Ca3(PO4)2 hybrid nanoflowers demonstrated increased storage stability than that of the free KatA, maintaining 82% of the original enzymatic activity after 14 d of storage at 4 ℃, whereas the free KatA has only 50% of the original enzymatic activity. In addition, after 5 catalytic reactions, the nanoflower still maintained 55% of its initial enzymatic activity, indicating that it has good operational stability. The Km of the free KatA to the substrate hydrogen peroxide was (8.80±0.42) mmol/L, and the kcat/Km was (13 151.53± 299.19) L/(mmol·s). The Km of the KatA/Ca3(PO4)2 hybrid nanoflowers was (32.75±2.96) mmol/L, and the kcat/Km was (4 550.67±107.51) L/(mmol·s). Compared to the free KatA, the affinity of KatA/Ca3(PO4)2 hybrid nanoflowers to the substrate hydrogen peroxide was decreased, and the catalytic efficiency was also decreased. In summary, this study developed KatA/Ca3(PO4)2 hybrid nanoflowers using Ca2+ as a self-assembly inducer, which enhanced the enzymatic properties and will facilitate the environmentally friendly preparation and widespread application of immobilized catalase.
Catalase
;
Nanostructures/chemistry*
;
Hydrogen Peroxide/metabolism*
;
Enzymes, Immobilized/chemistry*
;
Catalysis
4.Lycium barbarum Polysaccharides Promotes Mitochondrial Biogenesis and Energy Balance in a NAFLD Cell Model.
Yan-Nan ZHANG ; Yi-Qiong GUO ; Yan-Na FAN ; Xiu-Juan TAO ; Qing-Han GAO ; Jian-Jun YANG
Chinese journal of integrative medicine 2022;28(11):975-982
OBJECTIVE:
To explore the protective effect and underlying mechanism of Lycium barbarum polysaccharides (LBP) in a non-alcoholic fatty liver disease (NAFLD) cell model.
METHODS:
Normal human hepatocyte LO2 cells were treated with 1 mmol/L free fatty acids (FFA) mixture for 24 h to induce NAFLD cell model. Cells were divided into 5 groups, including control, model, low-, medium- and high dose LBP (30,100 and 300 µg/mL) groups. The monosaccharide components of LBP were analyzed with high performance liquid chromatography. Effects of LBP on cell viability and intracellular lipid accumulation were assessed by cell counting Kit-8 assay and oil red O staining, respectively. Triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), adenosine triphosphate (ATP) and oxidative stress indicators were evaluated. Energy balance and mitochondrial biogenesis related mRNA and proteins were determined by quantitative real-time polymerase chain reaction and Western blot, respectively.
RESULTS:
Heteropolysaccharides with mannose and glucose are the main components of LBP. LBP treatment significantly decreased intracellular lipid accumulation as well as TG, ALT, AST and malondialdehyde levels (P<0.05 or P<0.01), increased the levels of superoxide dismutase, phospholipid hydroperoxide glutathione peroxidase, catalase, and ATP in NAFLD cell model (P<0.05). Meanwhile, the expression of uncoupling protein 2 was down-regulated and peroxisome proliferator-activated receptor gamma coactivator-1α/nuclear respiratory factor 1/mitochondrial transcription factor A pathway was up-regulated (P<0.05).
CONCLUSION
LBP promotes mitochondrial biogenesis and improves energy balance in NAFLD cell model.
Humans
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Lycium/metabolism*
;
Catalase/metabolism*
;
Organelle Biogenesis
;
Alanine Transaminase
;
Uncoupling Protein 2
;
Fatty Acids, Nonesterified
;
Mannose
;
Nuclear Respiratory Factor 1/metabolism*
;
PPAR gamma/metabolism*
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Drugs, Chinese Herbal/pharmacology*
;
Malondialdehyde/metabolism*
;
Superoxide Dismutase/metabolism*
;
Polysaccharides/pharmacology*
;
Triglycerides
;
RNA, Messenger
;
Aspartate Aminotransferases
;
Glucose
;
Adenosine Triphosphate
5.Effects of drought stress on physiological and biochemical and chemical components of Cinnamomum cassia seedlings.
Lei ZHONG ; Pei-Ran LIAO ; Chang-Zheng LIU ; Jia-Ping QIAN ; Wan-Cong HE ; Bi LUO ; Quan YANG
China Journal of Chinese Materia Medica 2021;46(9):2158-2166
Six month old Cinnamomum cassia seedlings were used to simulate drought stress with polyethylene glycol(PEG 6000). The physiological indicators(osmotic substances, antioxidant enzymes, etc.) and chemical components of seedlings under different drought levels and the correlation between the two were studied. The results showed that the chlorophyll content and relative water content decreased gradually with the increase of PGE 6000(0, 5%, 10%, 15%) concentration and time(3, 5, 7 d), while the soluble protein content, soluble sugar content and catalase(CAT) activity increased, but the rising rate slowed down with the time. The activities of peroxidase(POD), superoxide dismutase(SOD), malondialdehyde(MDA) and proline content increased at first and then decreased. The content of coumarin, cinnamaldehyde, cinnamic acid and dimethoxycinnamaldehyde decreased, while the content of cinnamyl alcohol continued to increase.Under drought stress, the fluorescence signals of reactive oxygen species and no contents in roots of C. cassia seedlings were significantly stronger than those of the control.Further correlation analysis showed that coumarin content, di-methoxycinnamaldehyde content and osmoregulation substance content were significantly negatively correlated(P<0.05), cinnamic acid content was significantly negatively correlated with POD and SOD activities(P<0.01).It was found that C. cassia seedlings showed a certain degree of drought tolerance under short-term or mild drought stress, but if the drought exceeded a certain degree, the physiological metabolism of the seedlings would be unbalanced.
Catalase
;
Cinnamomum aromaticum
;
Droughts
;
Malondialdehyde
;
Seedlings
;
Stress, Physiological
;
Superoxide Dismutase
6.Effect of Astaxanthin on Antioxidant Enzyme Activities in Suspended Leukocyte-Depleted Red Blood Cells Stored for Transfusion.
Journal of Experimental Hematology 2021;29(4):1312-1317
OBJECTIVE:
To observe the effect of astaxanthin (ASTA) on the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in suspended leukocyte-depleted red blood cells stored for transfusion.
METHODS:
The suspended leukocyte-depleted red blood cells were randomly divided into group A, B, C and D. The ASTA was added into preservation solution of suspended leukocyte-depleted red blood cells of group B, C and D with the final concentration 5, 10 and 20 μmol/L, respectively, while DMSO was added into cells of group A in the same volume. After 7, 14, 28 and 42 days of storage, the reactive oxygen species (ROS) content in red blood cells was detected by fluorescence microplate reader, malondialdehyde (MDA) content was detected by thiobarbituric acid (TBA) method, activity of SOD was detected by xanthine oxidase method, the activity of CAT was detected by visible light method, and activity of GSH-Px was detected by colorimetry.
RESULTS:
After 7, 14, 28 and 42 days of storage, the contents of ROS and MDA in suspended red blood cells of group B, C and D were significantly lower(P<0.05), while the activities of SOD and GSH-Px were higher than those of group A(P<0.05); and CAT activity in cells treated by ASTA was significantly higher at 28 and 42 days of storage in comparison with that of group A(P<0.05). There were positive correlations between the ROS, MDA content in suspended red blood cells of group A, B, C, D and storage time(P<0.01), while negative correlation between SOD, CAT, GSH-Px activity and storage time(P<0.01).
CONCLUSION
ASTA can decrease the oxidative stress level and peroxide damage degree by increasing the antioxidant enzyme activities in suspended leukocyte-depleted red blood cells during storage.
Antioxidants
;
Catalase/metabolism*
;
Erythrocytes
;
Leukocytes
;
Oxidative Stress
;
Superoxide Dismutase/metabolism*
;
Xanthophylls
7.Evaluation of Multidrug Resistant Loop-mediated Isothermal Amplification Assay for Detecting the Drug Resistance of
Chun Fa LIU ; Yi Meng SONG ; Ping HE ; Dong Xin LIU ; Wen Cong HE ; Yan Ming LI ; Yan Lin ZHAO
Biomedical and Environmental Sciences 2021;34(8):616-622
Objective:
To evaluate multidrug resistant loop-mediated isothermal amplification (MDR-LAMP) assay for the early diagnosis of multidrug-resistant tuberculosis and to compare the mutation patterns associated with the
Methods:
MDR-LAMP assay was evaluated using 100
Results:
The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MDR-LAMP were 85.5%, 93.6%, 96.7%, and 74.4% for the detection of resistance to isoniazid and rifampicin, respectively, and 80.5%, 92.3%, 98.6%, and 41.4% for the detection of
Conclusion
MDR-LAMP is a rapid and accessible assay for the laboratory identification of rifampicin and isoniazid resistance of
Antitubercular Agents
;
Bacterial Proteins/genetics*
;
Catalase/genetics*
;
DNA, Bacterial/analysis*
;
DNA-Directed RNA Polymerases/genetics*
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Isoniazid
;
Molecular Diagnostic Techniques/methods*
;
Mutation
;
Mycobacterium tuberculosis/isolation & purification*
;
Nucleic Acid Amplification Techniques/methods*
;
Oxidoreductases/genetics*
;
Phenotype
;
Rifampin
;
Whole Genome Sequencing
8.Fusion expression with catalase improves the stability of multicopper oxidase and its efficiency in degrading biogenic amines.
Chinese Journal of Biotechnology 2021;37(12):4382-4394
Some enzymes belonging to the multicopper oxidase (MCO) family can degrade the hazardous biogenic amine (BA) present in food. However, the oxidation of MCO in the process of degrading BAs may reduce its activity and stability, resulting in decreased catalytic efficiency. In this work, an MCO from Lactobacillus fermentum (MCOF) was fused with a Bacillus subtilis catalase (CAT) using different strategies and the fusion enzymes were respectively expressed in Escherichia coli BL21(DE3). The tolerance of eight fused MCOFs to H2O2 increased by 51%-68%, and the stability of CAT&MCOF increased by 17%, compared to the wild type MCOF. Using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate, the substrate affinity (Km), the catalytic efficiency (kcat/Km) and the molar specific activity of CAT&MCOF increased by 1.0-fold, 1.7-fold and 1.2-fold than those of MCOF, respectively. The stability of CAT&MCOF under acidic conditions (pH 2.5-4.5) and moderate temperatures (35-55 °C) also improved. Moreover, the degradation rates of putrescine, cadaverine and histamine catalyzed by CAT&MCOF reached 31.7%, 36.0% and 57.8%, respectively, which increased by 132.5%, 45.7% and 38.9% compared to that of MCOF. The improvement on the stability and catalytic efficiency of MCOF by fusion expression with CAT provides a good example for improving the applicability of enzymes through molecular modifications.
Biogenic Amines
;
Cadaverine
;
Catalase/genetics*
;
Escherichia coli/genetics*
;
Hydrogen Peroxide
9.Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism.
Yu-Tao HUANG ; Wei WU ; Wen-Xiong ZOU ; Hua-Ping WU ; Dong-Dong CAO
Journal of Zhejiang University. Science. B 2020;21(10):796-810
Seed vigor is a key factor affecting seed quality. The mechanical drying process exerts a significant influence on rice seed vigor. The initial moisture content (IMC) and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying. This study aimed to determine the optimum drying temperature for rice seeds according to the IMC, and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor. Rice seeds with three different IMCs (20%, 25%, and 30%) were dried to the target moisture content (14%) at four different drying temperatures. The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds. The upper limits of drying temperature for rice seeds with 20%, 25%, and 30% IMCs were 45, 42, and 38 °C, respectively. The drying rate and seed temperature increased significantly with increasing drying temperature. The drying temperature, drying rate, and seed temperature showed extremely significant negative correlations with germination energy (GE), germination rate, germination index (GI), and vigor index (VI). A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide (H2O2) and superoxide anions in the seeds, enhanced superoxide dismutase (SOD) and catalase (CAT) activity, and increased the abscisic acid (ABA) content. In the early stage of seed germination, the IMC and drying temperature regulated seed germination through the metabolism of H2O2, gibberellin acid (GA), ABA, and α-amylase. These results indicate that the metabolism of reactive oxygen species (ROS), antioxidant enzymes, GA, ABA, and α-amylase might be involved in the mediation of the effects of drying temperature on seed vigor. The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds.
Abscisic Acid/metabolism*
;
Antioxidants/pharmacology*
;
Catalase/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Germination
;
Gibberellins/metabolism*
;
Hydrogen Peroxide/chemistry*
;
Malondialdehyde/chemistry*
;
Oryza/metabolism*
;
Oxygen/chemistry*
;
Plant Proteins/genetics*
;
Reactive Oxygen Species
;
Seeds/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/chemistry*
;
Temperature
;
Weather
;
alpha-Amylases/metabolism*
10.Antioxidant and antiobesity activities of oral treatment with ethanol extract from sprout of evening primrose (Oenothera laciniata) in high fat diet-induced obese mice
Chung Shil KWAK ; Mi Ju KIM ; Sun Gi KIM ; Sunyeong PARK ; In Gyu KIM ; Heun Soo KANG
Journal of Nutrition and Health 2019;52(6):529-539
PURPOSE: Sprouts of evening primrose (Oenothera laciniata, OL) were reported to have high contents of flavonoids and potent antioxidant activity. This study examined the antioxidant and antiobesity activities of OL sprouts to determine if they could be a natural health-beneficial resource preventing obesity and oxidative stress.METHODS: OL sprouts were extracted with 50% ethanol, evaporated, and lyophilized (OLE). The in vitro antioxidant activity of OLE was examined using four different tests. The antiobesity activity and in vivo antioxidant activity from OLE consumption were examined using high fat diet-induced obese (DIO) C57BL/6 mice.RESULTS: The IC₅₀ for the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging and superoxide dismutase (SOD)-like activities of OLE were 26.2 µg/mL and 327.6 µg/mL, respectively. OLE exhibited the ferric reducing antioxidant power (FRAP) activity of 56.7 µg ascorbic acid eq./mL at 100 µg/mL, and an increased glutathione level by 65.1% at 200 µg/mL compared to the control in the hUC-MSC stem cells. In an animal study, oral treatment with 50 mg or 100 mg of OLE/kg body weight for 14 weeks reduced the body weight gain, visceral fat content, fat cell size, blood leptin, and triglyceride levels, as well as the atherogenic index compared to the high fat diet control group (HFC) (p < 0.05). The blood malondialdehyde (MDA) level and the catalase and SOD-1 activities in adipose tissue were reduced significantly by the OLE treatment compared to HFC as well (p < 0.05). In epididymal adipose tissue, the OLE treatment reduced the mRNA expression of leptin, PPAR-γ and FAS significantly (p < 0.05) compared to HFC while it increased adiponectin expression (p < 0.05).CONCLUSION: OLE consumption has potent antioxidant and antiobesity activities via the suppression of oxidative stress and lipogenesis in DIO mice. Therefore, OLE could be a good candidate as a natural resource to develop functional food products that prevent obesity and oxidative stress.
Adipocytes
;
Adipokines
;
Adiponectin
;
Adipose Tissue
;
Animals
;
Ascorbic Acid
;
Body Weight
;
Catalase
;
Diet, High-Fat
;
Ethanol
;
Flavonoids
;
Functional Food
;
Glutathione
;
In Vitro Techniques
;
Intra-Abdominal Fat
;
Leptin
;
Lipogenesis
;
Malondialdehyde
;
Mice
;
Mice, Obese
;
Natural Resources
;
Obesity
;
Oenothera biennis
;
Oxidative Stress
;
RNA, Messenger
;
Stem Cells
;
Superoxide Dismutase
;
Triglycerides


Result Analysis
Print
Save
E-mail