1.Effect of glycosaminoglycans with different degrees of sulfation on chondrogenesis.
Wen ZHENG ; Ming-Xiang CAI ; Huizhen PENG ; Minyi LIU ; Xiangning LIU
West China Journal of Stomatology 2023;41(4):395-404
OBJECTIVES:
This study aims to investigate the effects and mechanisms of chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (HEP) on chondrogenesis of murine chondrogenic cell line (ATDC5) cells and the maintenance of murine articular cartilage in vitro.
METHODS:
ATDC5 and articular cartilage tissue explant were cultured in the medium containing different sulfated glycosaminoglycans. Cell proliferation, differentiation, cartilage formation, and mechanism were observed using cell proliferation assay, Alcian blue staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot, respectively.
RESULTS:
Results showed that HEP and DS primarily activated the bone morphogenetic protein (BMP) signal pathway, while CS primarily activated the protein kinase B (AKT) signal pathway, further promoted ATDC5 cell proliferation and matrix production, and increased Sox9, Col2a1, and Aggrecan expression.
CONCLUSIONS
This study investigated the differences and mechanisms of different sulfated glycosaminoglycans in chondrogenesis and cartilage homeostasis maintenance. HEP promotes cartilage formation and maintains the normal state of cartilage tissue in vitro, while CS plays a more effective role in the regeneration of damaged cartilage tissue.
Animals
;
Mice
;
Cartilage/metabolism*
;
Cell Differentiation
;
Cells, Cultured
;
Chondrocytes/metabolism*
;
Chondrogenesis/physiology*
;
Glycosaminoglycans/pharmacology*
2.Research progress on signaling molecules involved in articular cartilage repair.
Pengcheng TU ; Yang GUO ; Suyang ZHENG ; Yalan PAN ; Lining WANG ; Yong MA
Journal of Biomedical Engineering 2019;36(2):343-348
After the articular cartilage injury, the metabolic level is increased during the progressive degeneration, the chondrocytes secrete a variety of inflammatory factors, and the original cell phenotype is gradually changed. For a long time, a large number of researchers have done a lot of researches to promote anabolism of chondrocytes and to maintain the stability of chondrocyte phenotype. There are many molecular signaling pathways involved in the process of promoting cartilage repair. This review focuses on the key signaling molecules in articular cartilage repair, such as transforming growth factor-beta and bone morphogenetic protein, and reveals their roles in the process of cartilage injury and repair, so that researchers in related fields can understand the molecular mechanism of cartilage injury and repair widely and deeply. Based on this, they may find promising targets and biological methods for the treatment of cartilage injury.
Bone Morphogenetic Proteins
;
physiology
;
Cartilage, Articular
;
growth & development
;
injuries
;
Chondrocytes
;
physiology
;
Humans
;
Regeneration
;
Signal Transduction
;
Transforming Growth Factor beta
;
physiology
3.Outcomes of Modified Canal Wall Down Mastoidectomy and Mastoid Obliteration Using Autologous Materials
Bo Gyung KIM ; Hyo Jun KIM ; Seung Jae LEE ; Eunsang LEE ; Se A LEE ; Jong Dae LEE
Clinical and Experimental Otorhinolaryngology 2019;12(4):360-366
OBJECTIVES: The traditional canal wall down mastoidectomy (CWDM) procedure commonly has potential problems of altering the anatomy and physiology of the middle ear and mastoid. This study evaluated outcomes in patients who underwent modified canal wall down mastoidectomy (mCWDM) and mastoid obliteration using autologous materials. METHODS: Our study included 76 patients with chronic otitis media, cholesteatoma, and adhesive otitis who underwent mCWDM and mastoid obliteration using autologous materials between 2010 and 2015. Postoperative hearing air-bone gap and complications were evaluated. RESULTS: During the average follow-up of 64 months (range, 20 to 89 months), there was no recurrent or residual cholesteatoma or chronic otitis media. No patient had a cavity problem and anatomic integrity of the posterior canal wall was obtained. There was a significant improvement in hearing with respect to the postoperative air-bone gap (P<0.05). A retroauricular skin depression was a common complication of this technique. CONCLUSION: The present study suggests that our technique can prevent various complications of the classical CWDM technique using autologous tissues for mastoid cavity obliteration. It is also an appropriate method to obtain adequate volume for safe obliteration.
Adhesives
;
Cartilage
;
Cholesteatoma
;
Depression
;
Ear, Middle
;
Follow-Up Studies
;
Hearing
;
Humans
;
Mastoid
;
Methods
;
Otitis
;
Otitis Media
;
Physiology
;
Skin
4.Detection of Repair of the Zone of Calcified Cartilage with Osteoarthritis through Mesenchymal Stem Cells by Ultrashort Echo Time Magnetic Resonance Imaging.
Quan ZHOU ; Shao-Lin LI ; Ya-Jun MA ; Vicki De TAL ; Wei LI ; Ying-Hua ZHAO
Chinese Medical Journal 2018;131(9):1092-1098
ObjectiveCurrently, magnetic resonance imaging (MRI) is the most commonly used imaging modality for observing the growth and development of mesenchymal stem cells (MSCs) after in vivo transplantation to treat osteoarthritis (OA). However, it is a challenge to accurately monitor the treatment effects of MSCs in the zone of calcified cartilage (ZCC) with OA. This is especially true in the physiological and biochemical views that are not accurately detected by MRI contrast agents. In contrast, ultrashort time echo (UTE) MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs. A special focus is given to the outlook of the use of UTE MRI to detect repair of the ZCC with OA through MSCs. The limitations of the current techniques for clinical applications and future directions are also discussed.
Data SourcesUsing the combined keywords: "osteoarthritis", "mesenchymal stem cells", "calcified cartilage", and "magnetic resonance imaging", the PubMed/MEDLINE literature search was conducted up to June 1, 2017.
Study SelectionA total of 132 published articles were initially identified citations. Of the 132 articles, 48 articles were selected after further detailed review. This study referred to all the important English literature in full.
ResultsIn contrast, UTE MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs.
ConclusionsThe current studies showed that the ZCC could be described in terms of its histomorphology and biochemistry by UTE MRI. We prospected that UTE MRI has been shown the potential for more effectively observing the repair of the ZCC in OA by MSCs in vivo.
Cartilage, Articular ; diagnostic imaging ; Humans ; Magnetic Resonance Imaging ; methods ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stem Cells ; physiology ; Osteoarthritis ; diagnostic imaging ; therapy
5.Effects of Structural Changes in Subchondral Bone on Articular Cartilage in a Beagle Dog Model.
Dong YAN ; Tong Xi LIU ; Bao Yue LIU ; Ling WANG ; Zhan Hua QIAN ; Xiao Guang CHENG ; Kun Cheng LI
Biomedical and Environmental Sciences 2017;30(3):194-203
OBJECTIVEUsing MR T2-mapping and histopathologic score for articular cartilage to evaluate the effect of structural changes in subchondral bone on articular cartilage.
METHODSTwenty-four male Beagle dogs were randomly divided into a subchondral bone defect group (n = 12) and a bone cement group (n = 12). Models of subchondral bone defectin the medial tibial plateau and subchondral bone filled with bone cement were constructed. In all dogs, the left knee joint was used as the experimental sideand the right knee as the sham side. The T2 value for articular cartilage at the medial tibial plateau was measured at postoperative weeks 4, 8, 16, and 24. The articular cartilage specimens were stained with hematoxylin and eosin, and evaluated using the Mankin score.
RESULTSThere was a statistically significant difference (P < 0.05) in Mankin score between the bone defect group and the cement group at postoperative weeks 16 and 24. There was a statistically significant difference in the T2 values between the bone defect group and its sham group (P < 0.05) from week 8, and between the cement group and its sham group (P < 0.05) from week 16. There was significant difference in T2 values between the two experimental groups at postoperative week 24 (P < 0.01). The T2 value for articular cartilage was positively correlated with the Mankin score (ρ = 0.758, P < 0.01).
CONCLUSIONStructural changes in subchondral bone can lead to degeneration of the adjacent articular cartilage. Defects in subchondral bone cause more severe degeneration of cartilage than subchondral bone filled with cement. The T2 value for articular cartilage increases with the extent of degeneration. MR T2-mapping images and the T2 value for articular cartilage can indicate earlycartilage degeneration.
Animals ; Bone Cements ; Bone and Bones ; physiology ; Cartilage, Articular ; physiology ; Dogs ; Male
6.Increased Chondrocyte Apoptosis in Kashin-Beck Disease and Rats Induced by T-2 Toxin and Selenium Deficiency.
Hao Jie YANG ; Ying ZHANG ; Zhi Lun WANG ; Sen Hai XUE ; Si Yuan LI ; Xiao Rong ZHOU ; Meng ZHANG ; Qian FANG ; Wen Jun WANG ; Chen CHEN ; Xiang Hua DENG ; Jing Hong CHEN
Biomedical and Environmental Sciences 2017;30(5):351-362
OBJECTIVETo investigate chondrocyte apoptosis and the expression of biochemical markers associated with apoptosis in Kashin-Beck disease (KBD) and in an established T-2 toxin- and selenium (Se) deficiency-induced rat model.
METHODSCartilages were collected from the hand phalanges of five patients with KBD and five healthy children. Sprague-Dawley rats were administered a selenium-deficient diet for 4 weeks prior to T-2 toxin exposure. The apoptotic chondrocytes were observed by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Caspase-3, p53, Bcl-2, and Bax proteins in the cartilages were visualized by immunohistochemistry, their protein levels were determined by Western blotting, and mRNA levels were determined by real-time reverse transcription polymerase chain reaction.
RESULTSIncreased chondrocyte apoptosis was observed in the cartilages of children with KBD. Increased apoptotic and caspase-3-stained cells were observed in the cartilages of rats fed with normal and Se-deficient diets plus T-2 toxin exposure compared to those in rats fed with normal and Se-deficient diets. Caspase-3, p53, and Bax proteins and mRNA levels were higher, whereas Bcl-2 levels were lower in rats fed with normal or Se-deficiency diets supplemented with T-2 toxin than the corresponding levels in rats fed with normal diet.
CONCLUSIONT-2 toxin under a selenium-deficient nutritional status induces chondrocyte death, which emphasizes the role of chondrocyte apoptosis in cartilage damage and progression of KBD.
Adolescent ; Animals ; Apoptosis ; drug effects ; Biomarkers ; Cartilage, Articular ; physiopathology ; Child ; Chondrocytes ; physiology ; Female ; Humans ; Kashin-Beck Disease ; etiology ; physiopathology ; Male ; Matrilin Proteins ; genetics ; metabolism ; Models, Animal ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Selenium ; deficiency ; T-2 Toxin ; pharmacology
7.Effects of in vitro continuous passaging on the phenotype of mouse hyaline chondrocytes and the balance of the extra- cellular matrix.
Linyi CAI ; Xiangli KONG ; Jing XIE
West China Journal of Stomatology 2016;34(3):248-254
OBJECTIVEThis study aimed to investigate the effects of in vitro continuous passaging on the morphological phenotype and differentiation characteristics of mouse hyaline chondrocytes, as well as on the balance of the extracellular matrix (ECM).
METHODSEnzymatic digestion was conducted to isolate mouse hyaline chondrocytes, which expanded over five passages in vitro. Hematoxylin-eosin stain was used to show the changes in chondrocyte morphology. Semi-quantitative polymerase chain reaction was performed to analyze the mRNA changes in the marker genes, routine genes, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) in chondrocytes. Zymography was carried out to elucidate changes in gelatinase activities.
RESULTSAfter continuous expansion in vitro, the morphology of round or polygonal chondrocytes changed to elongated and spindled shape. The expression of marker genes significantly decreased (P < 0.05), and it was almost negatively expressed by P5 chondrocytes. By contrast, the down regulation of routine genes was insignificant. The gene expression levels of MMPs and TIMPs both decreased (P < 0.05), but the change in MMP-1 and TIMP-1 was not statistically significant (P > 0.05). Meanwhile, the ratio of MMPs/TIMPs was altered. At the protein level, the activities of gelatinases decreased after passaging, especially for P4 and P5 chondrocytes (P < 0.05).
CONCLUSIONSerially passaged chondrocytes dedifferentiated and lost specific phenotypic characteristics during in vitro expansion culture. Simultaneously, the anabolism and catabolism of the cartilage ECM became uncontrollable and led to the imbalance of ECM homeostasis. When hyaline chondrocytes are applied in research on relevant diseases or cartilage tissue engineering, P0-P2 chondrocytes should be used.
Animals ; Cartilage ; Cell Differentiation ; Cells, Cultured ; Chondrocytes ; physiology ; Cytoskeleton ; Extracellular Matrix ; Gelatinases ; Gene Expression ; Hyalin ; physiology ; Matrix Metalloproteinase 1 ; Matrix Metalloproteinases ; Mice ; RNA, Messenger ; Tissue Engineering ; Tissue Inhibitor of Metalloproteinase-1 ; Tissue Inhibitor of Metalloproteinases
8.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
3T3 Cells
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Survival
;
physiology
;
Cells, Cultured
;
Chondrocytes
;
drug effects
;
enzymology
;
Coculture Techniques
;
Culture Media, Conditioned
;
Gelatinases
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
MAP Kinase Signaling System
;
physiology
;
Matrix Metalloproteinase 2
;
drug effects
;
Matrix Metalloproteinase 9
;
drug effects
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
drug effects
;
Monocytes
;
cytology
;
NF-kappa B
;
antagonists & inhibitors
;
Osteoclasts
;
physiology
;
Protease Inhibitors
;
analysis
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
Tissue Inhibitor of Metalloproteinase-2
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
9.Experimental study of the influence of expanded capsule on biomechanics of autograftedcostal cartilage.
Zhou JIAYU ; Shang QIAOLI ; Yang QINGHUA ; He LEREN ; Jiang HAIYUE
Chinese Journal of Plastic Surgery 2015;31(3):205-208
OBJECTIVETo explore the effect of the expanded capsule on biomechanics of the transplanted autologous costal cartilage.
METHODSTen New Zealand white rabbits aged 3 months were involved and four 15 ml tissue expanders were implanted symmetrically on the back of each rabbit. After 1 month, expanded capsules were removed (experimental group) on the left side and were reserved (control group) on the right side. Meanwhile, the 6th and 7th costal cartilage without the perichondrium were taken out and each cartilage was divided into two pieces and put under the expanded capsule symmetrically. The cartilage at the upper sides and lower sides were taken out at 4 weeks and 8 weeks later, respectively. All the cartilages were sculptured for the demand of the machine text. The tension and compression property of the cartilages were assessed by the material testing machine (Instron 5967) and the results were analyzed statistically.
RESULTS8 weeks lateral, the average ultimate tension strength was (4. 954 + 2. 8) MPa in experimental group and (2.939 + 0.842) MPa in control group. The average compressive strength was (58.74 ± 13.77) MPa in experimental group, and (47.61 ± 11.41) MPa in control group. The biomechanics property of the cartilages in the experimental group is better than the control group, and the differences were statistically significant.
CONCLUSIONSRemoving the expanded capsule is benefical to maintain the biomechanics of autologous costal cartilage.
Animals ; Autografts ; Biomechanical Phenomena ; Costal Cartilage ; physiology ; transplantation ; Humans ; Rabbits ; Ribs ; Tissue Expansion ; Tissue Expansion Devices
10.Glucan HBP-A increase type II collagen expression of chondrocytes in vitro and tissue engineered cartilage in vivo.
Yue-long CAO ; Ting LIU ; Jian PANG ; Ning-yang GAO ; Hong-sheng ZHAN ; Yin-yu SHI ; Xiang WANG ; Shun-chun WANG
Chinese journal of integrative medicine 2015;21(3):196-203
OBJECTIVEAlthough chondroprotective activities have been documented for polysaccharides, the potential target of different polysaccharide may differ. The study was aimed to explore the effect of glucan HBP-A in chondrocyte monolayer culture and chondrocytes-alginate hydrogel constructs in vivo, especially on the expression of type II collagen.
METHODSChondrocytes isolated from rabbit articular cartilage were cultured and verified by immunocytochemical staining of type II collagen. Chondrocyte viability was assessed after being treated with HBP-A in different concentrations. Morphological status of chondrocytes-alginate hydrogel constructs in vitro was observed by scanning electron microscope (SEM). The constructs were treated with HBP-A and then injected to nude mice subcutaneously. Six weeks after transplantation, the specimens were observed through transmission electron microscopy (TEM). The mRNA expressions of disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTs-5), aggrecan and type II collagen in both monolayer culture and constructs were determined by real time polymerase chain reaction (PCR). The expression of type II collagen and matrix metalloproteinases-3 (MMP-3) in chondrocyte monolayer culture was also tested through Western blot and enzyme linked immunosorbent assay (ELISA), respectively.
RESULTSMMP-3 secretion and ADAMTs-5 mRNA expression in vitro were inhibited by HBP-A at 0.3 mg/mL concentration. In morphological study, there were significant appearance of collagen in those constructs treated by HBP-A. Accordingly, in both chondrocyte monolayer culture and chondrocytes-alginate hydrogel constructs, the expression of type II collagen was increased significantly in HBP-A group when compared with control group (P<0.001).
CONCLUSIONSThe study documented that the potential pharmacological target of glucan HBP-A in chondrocytes monolayer culture and tissue engineered cartilage in vivo may be concerned with the inhibition of catabolic enzymes MMP-3, ADAMTs-5, and increasing of type II collagen expression.
ADAM Proteins ; genetics ; metabolism ; Aggrecans ; genetics ; metabolism ; Alginates ; pharmacology ; Animals ; Cartilage, Articular ; drug effects ; physiology ; Cell Proliferation ; drug effects ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; Chondrocytes ; cytology ; drug effects ; metabolism ; ultrastructure ; Collagen Type II ; genetics ; metabolism ; Female ; Glucans ; pharmacology ; Glucuronic Acid ; pharmacology ; Hexuronic Acids ; pharmacology ; Hydrogel, Polyethylene Glycol Dimethacrylate ; pharmacology ; Immunohistochemistry ; Matrix Metalloproteinase 3 ; metabolism ; Mice, Nude ; RNA, Messenger ; genetics ; metabolism ; Rabbits ; Tissue Engineering ; methods

Result Analysis
Print
Save
E-mail