1.Effect of quercetin on chondrocyte phenotype and extracellular matrix expression.
Zhi-Peng GUI ; Yue HU ; Yu-Ning ZHOU ; Kai-Li LIN ; Yuan-Jin XU
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):922-933
Due to the poor repair ability of cartilage tissue, regenerative medicine still faces great challenges in the repair of large articular cartilage defects. Quercetin is widely applied as a traditional Chinese medicine in tissue regeneration including liver, bone and skin tissues. However, the evidence for its effects and internal mechanisms for cartilage regeneration are limited. In the present study, the effects of quercetin on chondrocyte function were systematically evaluated by CCK8 assay, PCR assay, cartilaginous matrix staining assays, immunofluorescence assay, and western blotting. The results showed that quercetin significantly up-regulated the expression of chondrogenesis genes and stimulated the secretion of GAG (glycosaminoglycan) through activating the ERK, P38 and AKT signalling pathways in a dose-dependent manner. Furthermore, in vivo experiments revealed that quercetin-loaded silk protein scaffolds dramatically stimulated the formation of new cartilage-like tissue with higher histological scores in rat femoral cartilage defects. These data suggest that quercetin can effectively stimulate chondrogenesis in vitro and in vivo, demonstrating the potential application of quercetin in the regeneration of cartilage defects.
Animals
;
Cartilage/cytology*
;
Chondrocytes/drug effects*
;
Chondrogenesis/drug effects*
;
Extracellular Matrix/metabolism*
;
Quercetin/pharmacology*
;
Rats
;
Signal Transduction/drug effects*
;
Tissue Scaffolds
2.Increased Chondrocyte Apoptosis in Kashin-Beck Disease and Rats Induced by T-2 Toxin and Selenium Deficiency.
Hao Jie YANG ; Ying ZHANG ; Zhi Lun WANG ; Sen Hai XUE ; Si Yuan LI ; Xiao Rong ZHOU ; Meng ZHANG ; Qian FANG ; Wen Jun WANG ; Chen CHEN ; Xiang Hua DENG ; Jing Hong CHEN
Biomedical and Environmental Sciences 2017;30(5):351-362
OBJECTIVETo investigate chondrocyte apoptosis and the expression of biochemical markers associated with apoptosis in Kashin-Beck disease (KBD) and in an established T-2 toxin- and selenium (Se) deficiency-induced rat model.
METHODSCartilages were collected from the hand phalanges of five patients with KBD and five healthy children. Sprague-Dawley rats were administered a selenium-deficient diet for 4 weeks prior to T-2 toxin exposure. The apoptotic chondrocytes were observed by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Caspase-3, p53, Bcl-2, and Bax proteins in the cartilages were visualized by immunohistochemistry, their protein levels were determined by Western blotting, and mRNA levels were determined by real-time reverse transcription polymerase chain reaction.
RESULTSIncreased chondrocyte apoptosis was observed in the cartilages of children with KBD. Increased apoptotic and caspase-3-stained cells were observed in the cartilages of rats fed with normal and Se-deficient diets plus T-2 toxin exposure compared to those in rats fed with normal and Se-deficient diets. Caspase-3, p53, and Bax proteins and mRNA levels were higher, whereas Bcl-2 levels were lower in rats fed with normal or Se-deficiency diets supplemented with T-2 toxin than the corresponding levels in rats fed with normal diet.
CONCLUSIONT-2 toxin under a selenium-deficient nutritional status induces chondrocyte death, which emphasizes the role of chondrocyte apoptosis in cartilage damage and progression of KBD.
Adolescent ; Animals ; Apoptosis ; drug effects ; Biomarkers ; Cartilage, Articular ; physiopathology ; Child ; Chondrocytes ; physiology ; Female ; Humans ; Kashin-Beck Disease ; etiology ; physiopathology ; Male ; Matrilin Proteins ; genetics ; metabolism ; Models, Animal ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Selenium ; deficiency ; T-2 Toxin ; pharmacology
3.Inhibitory effects of SRT1720 on the apoptosis of rabbit chondrocytes by activating SIRT1 via p53/bax and NF-κB/PGC-1α pathways.
Bi LIU ; Ming LEI ; Tao HU ; Fei YU ; De-Ming XIAO ; Hao KANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):350-355
SRT1720, a new discovered drug, was reported to activate silent information regulator 1 (SIRT1) and inhibit the chondrocyte apoptosis. However, the underlying mechanism remains elusive. In the present study, the chondrocytes were extracted from the cartilage tissues of New Zealand white rabbits, cultured in the presence of sodium nitroprusside (SNP) (2.5 mmol/L) and divided into five groups: 1, 5, 10, and 20 μmol/L SRT1720 groups and blank control group (0 μmol/L SRT1720). MTT assay was used to detect the chondrocyte viability and proliferation, and DAPI staining and flow cytometry to measure the chondrocyte apoptosis. The expression levels of SIRT1, p53, NF-κB/p65, Bax, and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) were detected by Western blotting and the expression levels of SIRT1, type II collagen, and aggrecan mRNA by RT-PCR. The results showed that in the SRT1720-treated groups, the nuclei of chondrocytes were morphologically intact and had uniform chromatin. In the blank control group, nuclear rupture into debris was observed in chondrocytes. With the SRT1720 concentration increasing, the chondrocyte viability increased, the apoptosis rate decreased, the protein expression levels of SIRT1 and PGC-1α and the mRNA expression levels of type II collagen and aggrecan increased ({ptP}<0.05), and the expression levels of p53, NF-κB and bax decreased (P<0.05). It was suggested that SRT1720 inhibits chondrocyte apoptosis by activating the expression of SIRT1 via p53/bax and NF-κB/PGC-1α pathways.
Aggrecans
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Cartilage, Articular
;
cytology
;
drug effects
;
metabolism
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Chondrocytes
;
cytology
;
drug effects
;
metabolism
;
Chromatin
;
chemistry
;
drug effects
;
metabolism
;
Collagen Type II
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Heterocyclic Compounds, 4 or More Rings
;
pharmacology
;
Nitroprusside
;
toxicity
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
genetics
;
metabolism
;
Primary Cell Culture
;
Rabbits
;
Signal Transduction
;
drug effects
;
genetics
;
Sirtuin 1
;
genetics
;
metabolism
;
Transcription Factor RelA
;
genetics
;
metabolism
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
4.Inflammatory cytokines and oxidative stress markers in the inhibition of osteoarthritis by curcumin.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):461-468
To observe the influence of matrix metalloproteinases-2 (MMP-2), monocyte chemoattractant protein-1 (MCP-1), CD47, L-selectin and advanced oxidation proteinproducts (AOPP) in osteoarthritis and the intervention of curcumin.A total of 20 male C57BL/6 mice (10.05-15.00 g) were randomly divided into control group, OA group, Cur25 group and Cur50 group (intraperitoneal injected 25 μmol/L or 50 μmol/L of curcumin everyday after modeling). After 4 weeks treatment, we observed the morphological changes of the gross specimen by immunohistochemical method, and observed the ultrastructure of cartilage tissue under electron microscope. The expression of MMP-2, MCP-1 and CD47 were detected by western blotting, and L-selectin and AOPP were detected by ELISA and spectrophotometer, respectively.In the cartilage tissue morphology, the chondrocytes of OA group showed obvious change, while Cur25 and Cur50 groups maintained the good cartilage cell membrane intact. Compared with control group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in OA group, Cur25 group and Cur50 group were increased (all<0.05), while CD47 levels were decreased (all<0.05). Compared with OA group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in Cur25 group and Cur50 group were decreased (all<0.05), while CD47 levels were increased (all<0.05), and such changes were more significant in Cur50 group (all<0.05).The MMP-2, MCP-1, CD47, L-selectin and AOPP are closely associated with the pathology course of OA. Curcumin has protection effect on cartilage, which can relieve joint cartilage degeneration, reduce cartilage inflammation and increase the metabolic activity of chondrocytes.
Advanced Oxidation Protein Products
;
metabolism
;
Animals
;
Biomarkers
;
CD47 Antigen
;
metabolism
;
Cartilage
;
chemistry
;
drug effects
;
pathology
;
Chemokine CCL2
;
metabolism
;
Chondrocytes
;
drug effects
;
pathology
;
Curcumin
;
administration & dosage
;
pharmacology
;
Cytokines
;
L-Selectin
;
metabolism
;
Male
;
Matrix Metalloproteinase 2
;
metabolism
;
Mice, Inbred C57BL
;
Osteoarthritis
;
genetics
;
pathology
;
physiopathology
;
Oxidative Stress
5.Protective effect of diosgenin on chondrocytes mediated by JAK2/STAT3 signaling pathway in mice with osteoarthritis.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):453-460
To investigate the effect of diosgenin (Dgn) on chondrocytes and its relation to JAK2/STAT3 signaling pathway in mice with osteoarthritis (OA).Fifteen male C57BL/6 mice were randomly divided into three groups:control group, OA group and OA+Dgn group. After 4 weeks of treatment, the histopathological changes of cartilage tissue were observed by toluidine blue staining under light microscopy and the ultrastructure of chondrocytes was observed under electron microscopy. The primarily cultured chondrocytes of OA mice were randomly divided into 4 groups:(1) OA group, (2) Dgn group, (3) Dgn+AG490 group, (4) AG490 group. The expression of p-JAK2, p-STAT3, Bax, succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) were detected by Western blotting, and superoxide dismutase (SOD) was detected using colorimetric method.The morphological observation showed that the chondrocytes of OA group presented considerable pathological changes, while the chondrocytes in OA+Dgn group maintained intact membrane. Electron microscopy observation found obvious injury in cartilage tissues of OA group, while that in OA+Dgn group remained smooth. Compared with OA group, the expressions of p-JAK2 and p-STAT3 in chondrocytes of Dgn group were increased (all<0.05), and the expressions of Bax protein, SDH, COX and SOD were decreased (all<0.05). While compared with Dgn group, the expressions of p-JAK2, p-STAT3, SDH, COX and SOD in chondrocytes of Dgn+AG490 group were decreased (all<0.05), and the expression of Bax protein was increased (<0.05).Diosgenin can inhibit apoptosis and increase mitochondrial oxidative stress capacity of chondrocytes in mice with osteoarthritis, which is closely related to the activation of JAK2/STAT3 signaling pathway.
Animals
;
Apoptosis
;
drug effects
;
Cartilage
;
drug effects
;
pathology
;
Chondrocytes
;
chemistry
;
drug effects
;
pathology
;
Diosgenin
;
pharmacology
;
Electron Transport Complex IV
;
metabolism
;
Janus Kinase 2
;
drug effects
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria
;
drug effects
;
genetics
;
Osteoarthritis
;
genetics
;
physiopathology
;
Oxidative Stress
;
drug effects
;
STAT3 Transcription Factor
;
drug effects
;
Signal Transduction
;
Succinate Dehydrogenase
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Tyrphostins
;
pharmacology
;
bcl-2-Associated X Protein
;
metabolism
6.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
3T3 Cells
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Survival
;
physiology
;
Cells, Cultured
;
Chondrocytes
;
drug effects
;
enzymology
;
Coculture Techniques
;
Culture Media, Conditioned
;
Gelatinases
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
MAP Kinase Signaling System
;
physiology
;
Matrix Metalloproteinase 2
;
drug effects
;
Matrix Metalloproteinase 9
;
drug effects
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
drug effects
;
Monocytes
;
cytology
;
NF-kappa B
;
antagonists & inhibitors
;
Osteoclasts
;
physiology
;
Protease Inhibitors
;
analysis
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
Tissue Inhibitor of Metalloproteinase-2
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
7.Glucan HBP-A increase type II collagen expression of chondrocytes in vitro and tissue engineered cartilage in vivo.
Yue-long CAO ; Ting LIU ; Jian PANG ; Ning-yang GAO ; Hong-sheng ZHAN ; Yin-yu SHI ; Xiang WANG ; Shun-chun WANG
Chinese journal of integrative medicine 2015;21(3):196-203
OBJECTIVEAlthough chondroprotective activities have been documented for polysaccharides, the potential target of different polysaccharide may differ. The study was aimed to explore the effect of glucan HBP-A in chondrocyte monolayer culture and chondrocytes-alginate hydrogel constructs in vivo, especially on the expression of type II collagen.
METHODSChondrocytes isolated from rabbit articular cartilage were cultured and verified by immunocytochemical staining of type II collagen. Chondrocyte viability was assessed after being treated with HBP-A in different concentrations. Morphological status of chondrocytes-alginate hydrogel constructs in vitro was observed by scanning electron microscope (SEM). The constructs were treated with HBP-A and then injected to nude mice subcutaneously. Six weeks after transplantation, the specimens were observed through transmission electron microscopy (TEM). The mRNA expressions of disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTs-5), aggrecan and type II collagen in both monolayer culture and constructs were determined by real time polymerase chain reaction (PCR). The expression of type II collagen and matrix metalloproteinases-3 (MMP-3) in chondrocyte monolayer culture was also tested through Western blot and enzyme linked immunosorbent assay (ELISA), respectively.
RESULTSMMP-3 secretion and ADAMTs-5 mRNA expression in vitro were inhibited by HBP-A at 0.3 mg/mL concentration. In morphological study, there were significant appearance of collagen in those constructs treated by HBP-A. Accordingly, in both chondrocyte monolayer culture and chondrocytes-alginate hydrogel constructs, the expression of type II collagen was increased significantly in HBP-A group when compared with control group (P<0.001).
CONCLUSIONSThe study documented that the potential pharmacological target of glucan HBP-A in chondrocytes monolayer culture and tissue engineered cartilage in vivo may be concerned with the inhibition of catabolic enzymes MMP-3, ADAMTs-5, and increasing of type II collagen expression.
ADAM Proteins ; genetics ; metabolism ; Aggrecans ; genetics ; metabolism ; Alginates ; pharmacology ; Animals ; Cartilage, Articular ; drug effects ; physiology ; Cell Proliferation ; drug effects ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; Chondrocytes ; cytology ; drug effects ; metabolism ; ultrastructure ; Collagen Type II ; genetics ; metabolism ; Female ; Glucans ; pharmacology ; Glucuronic Acid ; pharmacology ; Hexuronic Acids ; pharmacology ; Hydrogel, Polyethylene Glycol Dimethacrylate ; pharmacology ; Immunohistochemistry ; Matrix Metalloproteinase 3 ; metabolism ; Mice, Nude ; RNA, Messenger ; genetics ; metabolism ; Rabbits ; Tissue Engineering ; methods
8.Effects of Vam3 on sodium nitroprusside-induced apoptosis and SIRT1 and p53 expression in rat articular chondrocytes.
Ren-Tao JIANG ; Chun-Suo YAO ; Jin-Ye BAI ; Qi HOU
Acta Pharmaceutica Sinica 2014;49(5):608-614
This study is to investigate the effect of Vam3, a dimeric derivative of resveratrol, on SNP-induced apoptosis and its potential mechanism in rat articular chondrocytes. Isolated rat articular chondrocytes were treated with sodium nitroprusside (SNP), a NO donor, to induce apoptosis. Apoptosis percentage was evaluated by Annexin V-PI and nucleus fracture was examined by DAPI staining. Level of intracellular reactive oxygen species (ROS) was detected using 2, 7'-dichlorofluorescin diacetate (DCFH-DA) as a fluorescence probe by fluorescence microplate reader. The change in mitochondrial membrane potential was detected by TMRE staining. Expressions of SIRT1, acetylated p53 (ac-p53), cleaved caspase 9 and cleaved caspase 3 were determined by Western blotting. It showed that Vam3 up to 10 micromol x L(-1) could significantly reduce SNP-induced rat articular chondrocytes apoptosis (P < 0.01) and nucleus fracture, inhibit the increase of intracellular ROS level (P < 0.01) and reverse the decrease in mitochondrial membrane potential (P < 0.01). Simultaneously, Vam3 could upregulate the expression of SIRT1, deacetylate p53, and inhibit the cleavage of caspase 9 and caspase 3 (P < 0.01) of rat articular chondrocytes exposed to SNP. This study indicates Vam3 could protect rat articular chondrocytes against SNP-induced apoptosis, perhaps through the upregulation of SIRT1 and deacetylation of p53.
Animals
;
Apoptosis
;
drug effects
;
Arabidopsis Proteins
;
pharmacology
;
Cartilage, Articular
;
cytology
;
Caspase 3
;
metabolism
;
Caspase 9
;
metabolism
;
Cells, Cultured
;
Chondrocytes
;
cytology
;
metabolism
;
Male
;
Membrane Potential, Mitochondrial
;
drug effects
;
Nitric Oxide Donors
;
antagonists & inhibitors
;
pharmacology
;
Nitroprusside
;
pharmacology
;
Qa-SNARE Proteins
;
pharmacology
;
Rats
;
Rats, Wistar
;
Reactive Oxygen Species
;
metabolism
;
Sirtuin 1
;
metabolism
;
Tumor Suppressor Protein p53
;
metabolism
9.In vitro culture and identification of IL-1beta induced degeneration of cartilage cells in New Zealand white rabbits knee joint.
Hu YAN ; You-Xin SU ; Xue-Yi LIN
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(1):81-86
OBJECTIVETo explore and identify the method for IL-1beta induced New Zealand rabbit knee chondrocyte degeneration, thus providing experimental bases for Chinese medical research on osteoarthritis from in vitro cultured chondrocytes.
METHODSUnder aseptic conditions, bilateral knee joint cartilage was collected from 4-week old New Zealand rabbits. Chondrocytes were separated by type II collagenase digestion and mechanical blowing method. They were randomly divided into two groups when passaged to the 2nd generation, the normal control group (group Z) and the IL-1beta induced model group (group M). No intervention was given to those in group Z. 10% FBS culture media containing 10 ng/mL IL-1beta was added to group M. All cells were passaged to the 3rd generation. They were compared using morphological observation, toluidine blue staining, type II collagen immunohistochemical staining, and flow cytometry.
RESULTSUnder inverted microscope, the second and the 3rd generation chondrocytes' phenotype of group Z was stable with good proliferation. Most cells turned into fusiform and slabstone shaped. In group M, most cells turned into long spindle shape or irregular shape. Results of toluidine blue staining and immunohistochemistry showed that the positive expression of chondrocytes after staining in group Z was superior to that in group M. Results of flow cytometry showed that there was statistical difference in the apoptosis rate of the second generation chondrocytes between group M and group Z (P < 0.01).
CONCLUSIONIt was obviously seen that chondrocytes in IL-1beta induced New Zealand rabbit knee chondrocyte model obviously degenerated, which could be used in related experimental researches on osteoarthritis.
Animals ; Cartilage ; cytology ; drug effects ; Cells, Cultured ; Chondrocytes ; cytology ; drug effects ; Interleukin-1beta ; pharmacology ; Knee Joint ; cytology ; drug effects ; Rabbits
10.Effect of Ermiao Recipe with medicinal guide Angelicae Pubescentis Radix on promoting the homing of bone marrow stem cells to treat cartilage damage in osteoarthritis rats.
Ying XU ; Guo-jing DAI ; Qian LIU ; Xiao-ping MA ; Li LI ; Wei-heng CHEN ; Na LIN
Chinese journal of integrative medicine 2014;20(8):600-609
OBJECTIVETo investigate the effect of Ermiao Recipe (, EMR) with medicinal guide Angelicae Pubescentis Radix (APR) on the homing of bone marrow stem cells (BMSCs) to focal zone in osteoarthritis (OA) rats.
METHODSForty-eight Sprague-Dawley rats were randomly assigned to the sham-operated, model, EMR, and EMR plus APR groups (12 rats in each group). The OA rat model was induced by anterior cruciate ligament transection and medial meniscus resection. All rats were injected with recombinant human granulocyte colonystimulating factor [rhG-CSF, 30 μg/(kg·d) for continuous 7 days], and rats in the EMR and EMR plus APR groups were treated with EMR or EMR plus APR at 1.6 or 1.9 g/(kg·d) for 3 or 6 weeks, respectively. Cartilage histopathologic changes were observed by hematoxylin and eosin staining. Chondrocytes apoptosis and cartilage matrix components were tested by transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay and special staining. Interleukin-1β (IL-1 β), tumor necrosis factor α (TNF-α), bone morphogenetic protein 2 (BMP-2), and transforming growth factor beta-1 (TGF-β1) in serum were detected by enzyme-linked immunosorbent assay or radioimmunoassay assay. Matrix metalloproteinase (MMP)-13, tissue inhibitors of metalloproteinase (TIMP)-1, bromodeoxyuridine (BrdU), cluster of differentiation 34 (CD34), and stromal cell derived factor 1 (SDF-1) were measured by immunohistochemistry assay.
RESULTSEMR and EMR plus APR significantly inhibited articular cartilage damage and synovium inflammation in OA rats at 3 or 6 weeks of treatment, the most obvious changes in these parameters were found in the EMR plus APR group. At 6 weeks, compared with EMR treatment, EMR plus APR remarkably inhibited chondrocytes apoptosis and the release of IL-1β and TNF-α, obviously decreased MMP-13 expression, and significantly increased expressions of proteoglycan, collagen, type II collagen and TIMP-1, serum levels of BMP-2 and TGF-β1 as well as expressions of BrdU, CD34 and SDF-1 in cartilage articular (P<0.01 or P<0.05).
CONCLUSIONThe medicinal guide APR improved the therapeutic effects of EMR on OA rats by promoting directional homing of BMSCs to focal zone.
Animals ; Apoptosis ; drug effects ; Bone Marrow Cells ; drug effects ; Bone Morphogenetic Protein 2 ; blood ; Bromodeoxyuridine ; metabolism ; Cartilage, Articular ; drug effects ; enzymology ; pathology ; Chemokine CXCL12 ; metabolism ; Chondrocytes ; drug effects ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Granulocyte Colony-Stimulating Factor ; administration & dosage ; pharmacology ; Humans ; Interleukin-1beta ; blood ; Knee Joint ; drug effects ; pathology ; Male ; Matrix Metalloproteinase 13 ; metabolism ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type II ; blood ; Osteoarthritis ; blood ; drug therapy ; pathology ; Rats, Sprague-Dawley ; Synovial Membrane ; pathology ; Tissue Inhibitor of Metalloproteinase-1 ; metabolism ; Transforming Growth Factor beta1 ; blood ; Tumor Necrosis Factor-alpha ; blood

Result Analysis
Print
Save
E-mail