1.Research progress on signaling molecules involved in articular cartilage repair.
Pengcheng TU ; Yang GUO ; Suyang ZHENG ; Yalan PAN ; Lining WANG ; Yong MA
Journal of Biomedical Engineering 2019;36(2):343-348
After the articular cartilage injury, the metabolic level is increased during the progressive degeneration, the chondrocytes secrete a variety of inflammatory factors, and the original cell phenotype is gradually changed. For a long time, a large number of researchers have done a lot of researches to promote anabolism of chondrocytes and to maintain the stability of chondrocyte phenotype. There are many molecular signaling pathways involved in the process of promoting cartilage repair. This review focuses on the key signaling molecules in articular cartilage repair, such as transforming growth factor-beta and bone morphogenetic protein, and reveals their roles in the process of cartilage injury and repair, so that researchers in related fields can understand the molecular mechanism of cartilage injury and repair widely and deeply. Based on this, they may find promising targets and biological methods for the treatment of cartilage injury.
Bone Morphogenetic Proteins
;
physiology
;
Cartilage, Articular
;
growth & development
;
injuries
;
Chondrocytes
;
physiology
;
Humans
;
Regeneration
;
Signal Transduction
;
Transforming Growth Factor beta
;
physiology
2.Detection of Repair of the Zone of Calcified Cartilage with Osteoarthritis through Mesenchymal Stem Cells by Ultrashort Echo Time Magnetic Resonance Imaging.
Quan ZHOU ; Shao-Lin LI ; Ya-Jun MA ; Vicki De TAL ; Wei LI ; Ying-Hua ZHAO
Chinese Medical Journal 2018;131(9):1092-1098
ObjectiveCurrently, magnetic resonance imaging (MRI) is the most commonly used imaging modality for observing the growth and development of mesenchymal stem cells (MSCs) after in vivo transplantation to treat osteoarthritis (OA). However, it is a challenge to accurately monitor the treatment effects of MSCs in the zone of calcified cartilage (ZCC) with OA. This is especially true in the physiological and biochemical views that are not accurately detected by MRI contrast agents. In contrast, ultrashort time echo (UTE) MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs. A special focus is given to the outlook of the use of UTE MRI to detect repair of the ZCC with OA through MSCs. The limitations of the current techniques for clinical applications and future directions are also discussed.
Data SourcesUsing the combined keywords: "osteoarthritis", "mesenchymal stem cells", "calcified cartilage", and "magnetic resonance imaging", the PubMed/MEDLINE literature search was conducted up to June 1, 2017.
Study SelectionA total of 132 published articles were initially identified citations. Of the 132 articles, 48 articles were selected after further detailed review. This study referred to all the important English literature in full.
ResultsIn contrast, UTE MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs.
ConclusionsThe current studies showed that the ZCC could be described in terms of its histomorphology and biochemistry by UTE MRI. We prospected that UTE MRI has been shown the potential for more effectively observing the repair of the ZCC in OA by MSCs in vivo.
Cartilage, Articular ; diagnostic imaging ; Humans ; Magnetic Resonance Imaging ; methods ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stem Cells ; physiology ; Osteoarthritis ; diagnostic imaging ; therapy
3.Effects of Structural Changes in Subchondral Bone on Articular Cartilage in a Beagle Dog Model.
Dong YAN ; Tong Xi LIU ; Bao Yue LIU ; Ling WANG ; Zhan Hua QIAN ; Xiao Guang CHENG ; Kun Cheng LI
Biomedical and Environmental Sciences 2017;30(3):194-203
OBJECTIVEUsing MR T2-mapping and histopathologic score for articular cartilage to evaluate the effect of structural changes in subchondral bone on articular cartilage.
METHODSTwenty-four male Beagle dogs were randomly divided into a subchondral bone defect group (n = 12) and a bone cement group (n = 12). Models of subchondral bone defectin the medial tibial plateau and subchondral bone filled with bone cement were constructed. In all dogs, the left knee joint was used as the experimental sideand the right knee as the sham side. The T2 value for articular cartilage at the medial tibial plateau was measured at postoperative weeks 4, 8, 16, and 24. The articular cartilage specimens were stained with hematoxylin and eosin, and evaluated using the Mankin score.
RESULTSThere was a statistically significant difference (P < 0.05) in Mankin score between the bone defect group and the cement group at postoperative weeks 16 and 24. There was a statistically significant difference in the T2 values between the bone defect group and its sham group (P < 0.05) from week 8, and between the cement group and its sham group (P < 0.05) from week 16. There was significant difference in T2 values between the two experimental groups at postoperative week 24 (P < 0.01). The T2 value for articular cartilage was positively correlated with the Mankin score (ρ = 0.758, P < 0.01).
CONCLUSIONStructural changes in subchondral bone can lead to degeneration of the adjacent articular cartilage. Defects in subchondral bone cause more severe degeneration of cartilage than subchondral bone filled with cement. The T2 value for articular cartilage increases with the extent of degeneration. MR T2-mapping images and the T2 value for articular cartilage can indicate earlycartilage degeneration.
Animals ; Bone Cements ; Bone and Bones ; physiology ; Cartilage, Articular ; physiology ; Dogs ; Male
4.Increased Chondrocyte Apoptosis in Kashin-Beck Disease and Rats Induced by T-2 Toxin and Selenium Deficiency.
Hao Jie YANG ; Ying ZHANG ; Zhi Lun WANG ; Sen Hai XUE ; Si Yuan LI ; Xiao Rong ZHOU ; Meng ZHANG ; Qian FANG ; Wen Jun WANG ; Chen CHEN ; Xiang Hua DENG ; Jing Hong CHEN
Biomedical and Environmental Sciences 2017;30(5):351-362
OBJECTIVETo investigate chondrocyte apoptosis and the expression of biochemical markers associated with apoptosis in Kashin-Beck disease (KBD) and in an established T-2 toxin- and selenium (Se) deficiency-induced rat model.
METHODSCartilages were collected from the hand phalanges of five patients with KBD and five healthy children. Sprague-Dawley rats were administered a selenium-deficient diet for 4 weeks prior to T-2 toxin exposure. The apoptotic chondrocytes were observed by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Caspase-3, p53, Bcl-2, and Bax proteins in the cartilages were visualized by immunohistochemistry, their protein levels were determined by Western blotting, and mRNA levels were determined by real-time reverse transcription polymerase chain reaction.
RESULTSIncreased chondrocyte apoptosis was observed in the cartilages of children with KBD. Increased apoptotic and caspase-3-stained cells were observed in the cartilages of rats fed with normal and Se-deficient diets plus T-2 toxin exposure compared to those in rats fed with normal and Se-deficient diets. Caspase-3, p53, and Bax proteins and mRNA levels were higher, whereas Bcl-2 levels were lower in rats fed with normal or Se-deficiency diets supplemented with T-2 toxin than the corresponding levels in rats fed with normal diet.
CONCLUSIONT-2 toxin under a selenium-deficient nutritional status induces chondrocyte death, which emphasizes the role of chondrocyte apoptosis in cartilage damage and progression of KBD.
Adolescent ; Animals ; Apoptosis ; drug effects ; Biomarkers ; Cartilage, Articular ; physiopathology ; Child ; Chondrocytes ; physiology ; Female ; Humans ; Kashin-Beck Disease ; etiology ; physiopathology ; Male ; Matrilin Proteins ; genetics ; metabolism ; Models, Animal ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Selenium ; deficiency ; T-2 Toxin ; pharmacology
5.Glucan HBP-A increase type II collagen expression of chondrocytes in vitro and tissue engineered cartilage in vivo.
Yue-long CAO ; Ting LIU ; Jian PANG ; Ning-yang GAO ; Hong-sheng ZHAN ; Yin-yu SHI ; Xiang WANG ; Shun-chun WANG
Chinese journal of integrative medicine 2015;21(3):196-203
OBJECTIVEAlthough chondroprotective activities have been documented for polysaccharides, the potential target of different polysaccharide may differ. The study was aimed to explore the effect of glucan HBP-A in chondrocyte monolayer culture and chondrocytes-alginate hydrogel constructs in vivo, especially on the expression of type II collagen.
METHODSChondrocytes isolated from rabbit articular cartilage were cultured and verified by immunocytochemical staining of type II collagen. Chondrocyte viability was assessed after being treated with HBP-A in different concentrations. Morphological status of chondrocytes-alginate hydrogel constructs in vitro was observed by scanning electron microscope (SEM). The constructs were treated with HBP-A and then injected to nude mice subcutaneously. Six weeks after transplantation, the specimens were observed through transmission electron microscopy (TEM). The mRNA expressions of disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTs-5), aggrecan and type II collagen in both monolayer culture and constructs were determined by real time polymerase chain reaction (PCR). The expression of type II collagen and matrix metalloproteinases-3 (MMP-3) in chondrocyte monolayer culture was also tested through Western blot and enzyme linked immunosorbent assay (ELISA), respectively.
RESULTSMMP-3 secretion and ADAMTs-5 mRNA expression in vitro were inhibited by HBP-A at 0.3 mg/mL concentration. In morphological study, there were significant appearance of collagen in those constructs treated by HBP-A. Accordingly, in both chondrocyte monolayer culture and chondrocytes-alginate hydrogel constructs, the expression of type II collagen was increased significantly in HBP-A group when compared with control group (P<0.001).
CONCLUSIONSThe study documented that the potential pharmacological target of glucan HBP-A in chondrocytes monolayer culture and tissue engineered cartilage in vivo may be concerned with the inhibition of catabolic enzymes MMP-3, ADAMTs-5, and increasing of type II collagen expression.
ADAM Proteins ; genetics ; metabolism ; Aggrecans ; genetics ; metabolism ; Alginates ; pharmacology ; Animals ; Cartilage, Articular ; drug effects ; physiology ; Cell Proliferation ; drug effects ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; Chondrocytes ; cytology ; drug effects ; metabolism ; ultrastructure ; Collagen Type II ; genetics ; metabolism ; Female ; Glucans ; pharmacology ; Glucuronic Acid ; pharmacology ; Hexuronic Acids ; pharmacology ; Hydrogel, Polyethylene Glycol Dimethacrylate ; pharmacology ; Immunohistochemistry ; Matrix Metalloproteinase 3 ; metabolism ; Mice, Nude ; RNA, Messenger ; genetics ; metabolism ; Rabbits ; Tissue Engineering ; methods
6.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
3T3 Cells
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Survival
;
physiology
;
Cells, Cultured
;
Chondrocytes
;
drug effects
;
enzymology
;
Coculture Techniques
;
Culture Media, Conditioned
;
Gelatinases
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
MAP Kinase Signaling System
;
physiology
;
Matrix Metalloproteinase 2
;
drug effects
;
Matrix Metalloproteinase 9
;
drug effects
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
drug effects
;
Monocytes
;
cytology
;
NF-kappa B
;
antagonists & inhibitors
;
Osteoclasts
;
physiology
;
Protease Inhibitors
;
analysis
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
Tissue Inhibitor of Metalloproteinase-2
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
7.Withaferin A-Caused Production of Intracellular Reactive Oxygen Species Modulates Apoptosis via PI3K/Akt and JNKinase in Rabbit Articular Chondrocytes.
Journal of Korean Medical Science 2014;29(8):1042-1053
Withaferin A (WFA) is known as a constituent of Ayurvedic medicinal plant, Withania somnifera, and has been used for thousands of years. Although WFA has been used for the treatment of osteoarthritis (OA) and has a wide range of biochemical and pharmacologic activities, there are no findings suggesting its properties on chondrocytes or cartilage. The aim of the present study is to investigate the effects of WFA on apoptosis with focus on generation of intracellular reactive oxygen species (ROS). Here we showed that WFA significantly increased the generation of intracellular ROS in a dose-dependent manner. We also determined that WFA markedly leads to apoptosis as evidenced by accumulation of p53 by Western blot analysis. N-Acetyl-L-Cystein (NAC), an antioxidant, prevented WFA-caused expression of p53 and inhibited apoptosis of chondrocytes. We also found that WFA causes the activation of PI3K/Akt and JNKinase. Inhibition of PI3K/Akt and JNKinase with LY294002 (LY)/triciribine (TB) or SP600125 (SP) in WFA-treated cells reduced accumulation of p53 and inhibited fragmented DNA. Our findings suggested that apoptosis caused by WFA-induced intracellular ROS generation is regulated through PI3K/Akt and JNKinase in rabbit articular chondrocytes.
Animals
;
Anti-Inflammatory Agents/administration & dosage
;
Apoptosis/drug effects/physiology
;
Cartilage, Articular/cytology/drug effects/*metabolism
;
Cells, Cultured
;
Chondrocytes/drug effects/*metabolism
;
Dose-Response Relationship, Drug
;
MAP Kinase Kinase 4/*metabolism
;
Phosphatidylinositol 3-Kinases/*metabolism
;
Proto-Oncogene Proteins c-akt/metabolism
;
Rabbits
;
Reactive Oxygen Species/*metabolism
;
Withanolides/*administration & dosage
8.Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy.
Yuelong HUANG ; Yujun ZHANG ; Xiaoquan DING ; Songyang LIU ; Tiezheng SUN
Chinese Medical Journal 2014;127(22):3881-3886
BACKGROUNDThe thermal injury during bipolar radiofrequercy results in chondrocyte death that limits cartilage repair. The purpose was to determine the effects of various factors of bipolar radiofrequency on human articular cartilage after thermal injury, offering suitable working conditions for bipolar radiofrequency during arthroscopy.
METHODSOsteochondral explants from 28 patients undergoing total knee arthroplasty (TKA) in Department of Orthopaedic, Peking University Reople's Hospital from October 2013 to May 2014, were harvested and treated using bipolar radiofrequency in a light contact mode under the following conditions: various power setting of levels 2, 4 and 6; different durations of 2 seconds, 5 seconds and 10 seconds; irrigation with fluids of different temperatures of 4°C, 22°C, and 37°C; two different bipolar radiofrequency probes ArthroCare TriStar 50 and Paragon T2. The percentage of cell death and depth of cell death were quantified with laser confocal microscopy. The content of proteoglycan elution at different temperatures was determined by spectrophotometer at 530 nm.
RESULTSChondrocyte mortality during the treatment time of 2 seconds and power setting of level 2 was significantly lower than that with long duration or in higher level groups (time: P = 0.001; power: P = 0.001). The percentage of cell death after thermal injury was gradually reduced by increasing the temperature of the irrigation solutions (P = 0.003), the depth of dead chondrocytes in the 37°C solution group was significantly less than those in the 4°C and 22°C groups (P = 0.001). The proteoglycan elution was also gradually reduced by increasing the temperature (P = 0.004). Compared with the ArthroCare TriStar 50 group, the percentage of cell death in the Paragon T2 group was significantly decreased (P = 0.046).
CONCLUSIONSThermal chondroplasty with bipolar radiofrequency resulted in defined margins of chondrocyte death under controlled conditions. The least cartilage damage during thermal chondroplasty could be achieved with lower power, shorter duration, suitable temperature of irrigation solutions and chondroprotective probes. The recommendations for the use of bipolar radiofrequency to minimize cartilage damage could be achieved with a power setting of level 2, treatment duration of 2 seconds, suitable fluid temperature (closer to body temperature of 37°C) and chondroprotective Paragon T2 probes.
Arthroplasty, Replacement, Knee ; methods ; Cartilage, Articular ; surgery ; Catheter Ablation ; methods ; Cell Survival ; physiology ; Chondrocytes ; pathology ; Humans ; Microscopy, Confocal
9.Effects of exercises on knee cartilage volume in young healthy adults: a randomized controlled trial.
Chinese Medical Journal 2014;127(12):2316-2321
BACKGROUNDAcute effects of physical exercise on the deformational behavior of knee articular cartilage and changes in cartilage volume are definite. However, conclusive effects of different exercises on the loss of articular cartilage volume have not been proved. In this parallel-group randomized controlled trial, we tested whether 12 weeks of swimming, powerstriding, cycling, and running exercises would decrease the cartilage volume significantly and whether there would be a difference in the loss of cartilage volume after different types of exercises.
METHODSFrom October 2012 to January 2013 we evaluated 120 healthy volunteer students in Biomechanics Laboratory of Tongji University. Body mass index (BMI), right lower limb strength, and right knee cartilage magnetic resonance imaging (MRI) were obtained before exercise. MRI were conducted in East Hospital. The study was approved by Tongji University Ethical Committee, all subjects were randomly assigned to the running, powerstriding, cycling, swimming, and control groups by a drawing of lots. Each group contained 24 samples. At the end of 12 weeks of regular exercises, the same measurement procedures were applied. Cartilage volume was calculated with OSIRIS software based on the quantitative-MRI. Pre- and post-exercise comparisons were carried out using paired t-tests and one-way analysis of variance (ANOVA) was used to compare differences of cartilage volume loss between groups with Student-Newman-Keuls procedure for multiple comparisons.
RESULTSRunning, cycling, and swimming groups resulted in a significant decrease in BMI. The quadriceps peak torque increased significantly in the swimming and cycling groups. Total cartilage volume significantly decreased in the running and cycling groups after 12 weeks of training, without any significant change in the nonimpact swimming, low-impact powerstriding, and control groups. Loss of total cartilage volume in the running and cycling groups were 2.21% (3.03) and 1.50% (0.42).
CONCLUSIONSTwelve weeks of regular physical exercises (i.e., running and cycling) decrease the total knee cartilage volume. Swimming and powerstriding are recommended for the healthy youth. This finding suggests that articular cartilage has the functional adaptation for exercises, and some sports could be the risk factors for the initiation of osteoarthritis (OA) in young healthy adults.
Adolescent ; Adult ; Cartilage, Articular ; metabolism ; physiology ; Exercise ; physiology ; Female ; Humans ; Knee Joint ; metabolism ; physiology ; Male ; Young Adult
10.Serum-free media for articular chondrocytes in vitro expansion.
Xin-xin SHAO ; Neil A DUNCAN ; Lin LIN ; Xin FU ; Ji-ying ZHANG ; Chang-long YU
Chinese Medical Journal 2013;126(13):2523-2529
BACKGROUNDIn vitro chondrocyte expansion is a major challenge in cell-based therapy for human articular cartilage repair. Classical culture conditions usually use animal serum as a medium supplement, which raises a number of undesirable questions. In the present study, two kinds of defined, serum-free media were developed to expand chondrocytes in monolayer culture for the purpose of cartilage tissue engineering.
METHODSBovine chondrocytes were expanded in serum-free media supplemented with fibroblast growth factor-2 and platelet-derived growth factor or fibroblast growth factor-2 and insulin-like growth factor. Expansion culture in a conventional 10% fetal bovine serum (FBS) medium served as control. Fibronectin coating was used to help cell adhesion in serum-free medium. Next, in vitro three-dimensional pellet culture was used to evaluate the chondrocyte capacity. Cell pellets were expanded in different media to re-express the differentiated phenotype (re-differentiation) and to form cartilaginous tissue. The pellets were assessed by glycosaminoglycans contents, collagen II, collagen I and collagen X immunohistological staining.
RESULTSChondrocytes cultured in serum-free media showed no proliferation difference than cells grown with 10% FBS medium. In addition, chondrocytes expanded in both serum-free media expressed more differentiated phenotypes at the end of monolayer culture, as indicated by higher gene expression ratios of collagen type II to collagen type I. Pellets derived from chondrocytes cultured in both serum-free media displayed comparable chondrogenic capacities to pellets from cells expanded in 10% FBS medium.
CONCLUSIONThese findings provide alternative culture approaches for chondrocytes in vitro expansion, which may benefit the clinical use of autologous chondrocytes implantation.
Animals ; Cartilage, Articular ; cytology ; Cattle ; Cell Dedifferentiation ; Cells, Cultured ; Chondrocytes ; cytology ; physiology ; Culture Media, Serum-Free ; Fibronectins ; pharmacology ; Real-Time Polymerase Chain Reaction ; SOX9 Transcription Factor ; genetics

Result Analysis
Print
Save
E-mail