1.Infantile hypophosphatasia caused by a novel compound heterozygous mutation: a case report and pedigree analysis.
Deng-Feng LI ; Dan LAN ; Jing-Zi ZHONG ; Roma Kajal DEWAN ; Yan-Shu XIE ; Ying YANG
Chinese Journal of Contemporary Pediatrics 2017;19(5):539-544
		                        		
		                        			
		                        			This article reported the clinical features of one child with infantile hypophosphatasia (HPP) and his pedigree information. The proband was a 5-month-old boy with multiple skeletal dysplasia (koilosternia, bending deformity of both radii, and knock-knee deformity of both knees), feeding difficulty, reduction in body weight, developmental delay, recurrent pneumonia and respiratory failure, and a significant reduction in blood alkaline phosphatase. Among his parents, sister, uncle, and aunt (other family members did not cooperate with us in the examination), his parents and aunt had a slight reduction in alkaline phosphatase and his aunt had scoliosis; there were no other clinical phenotypes or abnormal laboratory testing results. His ALPL gene mutation came from c.228delG mutation in his mother and c.407G>A compound heterozygous mutation in his father. His aunt carried c.228delG mutation. The c.407G>A mutation had been reported as the pathogenic mutation of HPP, and c.228delG mutation was a novel pathogenic mutation. Hypophosphatasia is caused by ALPL gene mutation, and ALPL gene detection is an effective diagnostic method. This study expands the mutation spectrum of ALPL gene and provides a theoretical basis for genetic diagnosis of this disease.
		                        		
		                        		
		                        		
		                        			Alkaline Phosphatase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Heterozygote
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypophosphatasia
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Pedigree
		                        			
		                        		
		                        	
2.Expression and significance of mTOR/4EBP1/HIF-1α/VEGF signaling pathway in lung tissues of asthmatic mice.
Li WANG ; Yan-Li ZHANG ; Xiu-Fang WANG ; Zhe SONG ; Wei WANG
Chinese Journal of Contemporary Pediatrics 2017;19(1):104-110
OBJECTIVETo study the expression and significance of the mammalian target of rapamycin (mTOR)/eukaryote initiating factor 4E binding protein 1(4EBP1)/hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway in asthmatic mice.
METHODSForty SPF level 6-8 week-old female Balb/C mice were randomly divided into control, asthma, budesonide and mTOR inhibitor (rapamycin) intervention groups (n=10 each). The asthmatic mouse model was prepared via OVA induction and challenge test. The intervention groups were administered with rapamycin at the dosage of 3 mg/kg by an intraperitoneal injection or budesonide suspension at the dosage of l mg by aerosol inhalation respectively 30 minutes before the OVA challenge. The control and asthma groups were treated with normal saline instead. The concentrations of HIF-1α and VEGF in bronchoalveolar lavage fluid (BALF) were examined using ELISA 24 hours after the last challenge. The pathological changes of lung tissue were observed by hematoxylin-eosin (HE) staining. The p-mTOR and p-4EBP1 from the lung tissues were detected by immunohistochemistry and Western blot. Pearson analysis was used to study the correlation between p-mTOR, p-4EBP1, HIF-1α, and VEGF expression.
RESULTSCompared with the control group, inflammatory cell infiltration and secretions in the trachea increased in the asthma group. The levels of HIF-1α and VEGF in BALF and p-mTOR and p-4EBP1 expression in lung tissues also increased (P<0.01). Compared with the asthma group, inflammatory cell infiltration and secretions in the trachea were reduced in the two intervention groups, and the levels of HIF-1α and VEGF in BALF and p-mTOR and p-4EBP1 expression in lung tissues were also reduced (P<0.01). There were no significant differences in the above changes between the two intervention groups and control group (P>0.05). In the asthma group, there was a pairwise positive correlation between lung p-mTOR and p-4EBP1 expression and HIF-1α and VEGF levels in BALF (P<0.05). However, there were no correlations in the above indexes in the intervention groups and control group.
CONCLUSIONSp-mTOR, p-4EBP1, HIF-1α and VEGF together are involved in the pathogenesis of asthma. Rapamycin treatment can block this signaling pathway, suggesting that this pathway can be used as a novel target for asthma treatment.
Animals ; Asthma ; drug therapy ; metabolism ; Carrier Proteins ; analysis ; physiology ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit ; analysis ; physiology ; Lung ; chemistry ; pathology ; Mice ; Mice, Inbred BALB C ; Phosphoproteins ; analysis ; physiology ; Signal Transduction ; physiology ; TOR Serine-Threonine Kinases ; analysis ; physiology ; Vascular Endothelial Growth Factor A ; analysis ; physiology
3.Prognostic Impact of Cell Division Cycle Associated 2 Expression on Pancreatic Ductal Adenocarcinoma.
Meng-Yi WANG ; Zhe-Yu NIU ; Xiang-Gao GAO ; Li ZHOU ; Quan LIAO ; Yu-Pei ZHAO
Chinese Medical Sciences Journal 2016;31(3):149-154
		                        		
		                        			
		                        			Objective To examine the expression of cell division cycle associated 2 (CDCA 2) in pancreatic ductal adenocarcinoma (PDAC) and investigate its role in prognosis of PDAC patients. Methods This retrospective study included 155 PDAC patients who underwent surgical treatment and complete post-operative follow-up. Clinicopathologic data were collected through clinical database. Tissue microarray was constructed and immunohistochemistry was performed to detect CDCA2 expression in the PDAC tumor tissues and adjacent non-tumor tissues. Clinicopathological characteristics between high and low CDCA2 expression were compared. Correlation of CDCA2 expressions with patients' survival was analyzed using Kaplan-Meier method and Cox regression analysis. Results Expression of CDCA2 in PDAC cells was significantly higher than that in adjacent non-tumor tissues (U=4056.5, P<0.001). Univariate analysis showed that CDCA2 expression [hazard ratio (HR)=1.574, 95% confidence interval (CI)=1.014-2.443, P=0.043] and node metastasis (HR=1.704, 95%CI=1.183-2.454, P=0.004) were significantly associated with prognosis. Cox regression analysis showed CDCA2 expression was not an independent prognostic risk factor (HR=1.418, 95%CI=0.897-2.242, P=0.135) for PDCA patients. Stratification survival analysis demonstrated CDCA2 expression as an independent prognostic risk factor in male patients (HR=2.554, 95%CI=1.446-4.511, P=0.003) or in non-perineural invasion patients (HR=2.290, 95%CI=1.146-4.577, P=0.012). Conclusions CDCA2 is highly expressed in PDAC tumor tissue. Although CDCA2 is not an independent prognostic risk factor for PDAC patients, it might be used to help predict prognosis of male or non-perineural invasion patients of PDAC.
		                        		
		                        		
		                        		
		                        			Adenocarcinoma
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			mortality
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Aged, 80 and over
		                        			;
		                        		
		                        			Carcinoma, Pancreatic Ductal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			mortality
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Cell Cycle Proteins
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Cohort Studies
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Nuclear Proteins
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Pancreatic Neoplasms
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			mortality
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			Proportional Hazards Models
		                        			;
		                        		
		                        			Retrospective Studies
		                        			
		                        		
		                        	
4.Molecular recognition mechanism and motion of HCV NS3/4A protease with Faldaprevir analogue.
Li LIANG ; Jianping HU ; Wenyi DU ; Ke ZUO ; Wei LIU ; Xiaojun GOU
Chinese Journal of Biotechnology 2016;32(5):669-682
		                        		
		                        			
		                        			Faldaprevir analogue molecule (FAM) has been reported to effectively inhibit the catalytic activity of HCV NS3/4A protease, making it a potential lead compound against HCV. A series of HCV NS3/4A protease crystal structures were analyzed by bioinformatics methods, and the FAM-HCV NS3/4A protease crystal structure was chosen for this study. A 20.4 ns molecular dynamics simulation of the complex consists of HCV NS3/4A protease and FAM was conducted. The key amino acid residues for interaction and the binding driving force for the molecular recognition between the protease and FAM were identified from the hydrogen bonds and binding free energy analyses. With the driving force of hydrogen bonds and van der Waals, FAM specifically bind to the active pocket of HCV NS3/4A protease, including V130-S137, F152-D166, D77-D79 and V55, which agreed with the experimental data. The effect of R155K, D168E/V and V170T site-directed mutagenesis on FAM molecular recognition was analyzed for their effect on drug resistance, which provided the possible molecular explanation of FAM resistance. Finally, the system conformational change was explored by using free energy landscape and conformational cluster. The result showed four kinds of dominant conformation, which provides theoretical basis for subsequent design of Faldaprevir analogue inhibitors based on the structure of HCV NS3/4A protease.
		                        		
		                        		
		                        		
		                        			Antiviral Agents
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Drug Resistance, Viral
		                        			;
		                        		
		                        			Endopeptidases
		                        			;
		                        		
		                        			Hepacivirus
		                        			;
		                        		
		                        			Molecular Dynamics Simulation
		                        			;
		                        		
		                        			Mutagenesis, Site-Directed
		                        			;
		                        		
		                        			Oligopeptides
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Protease Inhibitors
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Serine Proteases
		                        			;
		                        		
		                        			Thiazoles
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Viral Nonstructural Proteins
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
5.Effects of Angelica dahurica on obesity and fatty liver in mice.
Xi LU ; Zhi-Yi YUAN ; Xiao-Jin YAN ; Fan LEI ; Jing-Fei JIANG ; Xuan YU ; Xiu-Wei YANG ; Dong-Ming XING ; Li-Jun DU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(9):641-652
		                        		
		                        			
		                        			Angelica dahurica (A. dahurica) is a traditional Chinese medicinal plant being used in clinical practice. The present study demonstrated that A. dahurica could reduce white-fat weight in high-fat-diet hyperlipidemic mice, decrease total cholesterol and triglyceride concentrations in the livers of both high-fat-diet and Triton WR1339 induced hyperlipidemic mice, and enhance the total hepatic lipase activities of them. These findings were further supported by the results derived from the experiments with HepG2 cells in vitro. In addition, the proteins related to lipids metabolism were investigated using LC-MS/MS, indicating that genes of lipid metabolism and lipid transport were regulated by A. dhurica. The results from LC-MS/MS were further conformed by Western blot and real time PCR assays. A. dahurica could down-regulate the expression of catalase (CAT) and sterol carrier protein2 (SCP2) and up-regulate the expression of lipid metabolism related genes-lipase member C (LIPC) and peroxisome proliferator-activated receptor gamma (PPARγ). In the Triton WR1339 mouse liver and HepG2 cells in vitro, A. dahurica was able to increase the expression of LIPC and PPARγ, confirming the results from in vivo experiments. Imperatorin showed the same activity as A. dahurica, suggesting it was one of the major active ingredients of the herb. In conclusion, our work represented a first investigation demonstrating that A. dahurica was able to regulate lipid metabolism and could be developed as a novel approach to fighting against fatty liver and obesity.
		                        		
		                        		
		                        		
		                        			Angelica
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cholesterol
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Fatty Liver
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred ICR
		                        			;
		                        		
		                        			Obesity
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			PPAR gamma
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Triglycerides
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
6.Gephyrin: a central GABAergic synapse organizer.
Experimental & Molecular Medicine 2015;47(4):e158-
		                        		
		                        			
		                        			Gephyrin is a central element that anchors, clusters and stabilizes glycine and gamma-aminobutyric acid type A receptors at inhibitory synapses of the mammalian brain. It self-assembles into a hexagonal lattice and interacts with various inhibitory synaptic proteins. Intriguingly, the clustering of gephyrin, which is regulated by multiple posttranslational modifications, is critical for inhibitory synapse formation and function. In this review, we summarize the basic properties of gephyrin and describe recent findings regarding its roles in inhibitory synapse formation, function and plasticity. We will also discuss the implications for the pathophysiology of brain disorders and raise the remaining open questions in this field.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Carrier Proteins/chemistry/genetics/*metabolism
		                        			;
		                        		
		                        			Disease Susceptibility
		                        			;
		                        		
		                        			GABAergic Neurons/*metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Membrane Proteins/chemistry/genetics/*metabolism
		                        			;
		                        		
		                        			Protein Binding
		                        			;
		                        		
		                        			Protein Interaction Domains and Motifs
		                        			;
		                        		
		                        			Protein Processing, Post-Translational
		                        			;
		                        		
		                        			Protein Transport
		                        			;
		                        		
		                        			Synapses/*metabolism
		                        			
		                        		
		                        	
7.Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen α.
Xinyue ZHANG ; Meng WU ; Wei ZHUO ; Jinke GU ; Sensen ZHANG ; Jingpeng GE ; Maojun YANG
Protein & Cell 2015;6(10):757-766
		                        		
		                        			
		                        			Bone sialoprotein-binding protein (Bbp), a MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family protein expressed on the surface of Staphylococcus aureus (S. aureus), mediates adherence to fibrinogen α (Fg α), a component in the extracellular matrix of the host cell and is important for infection and pathogenesis. In this study, we solved the crystal structures of apo-Bbp(273-598) and Bbp(273-598)-Fg α(561-575) complex at a resolution of 2.03 Å and 1.45 Å, respectively. Apo-Bbp(273-598) contained the ligand binding region N2 and N3 domains, both of which followed a DE variant IgG fold characterized by an additional D1 strand in N2 domain and D1' and D2' strands in N3 domain. The peptide mapped to the Fg α(561-575) bond to Bbp(273-598) on the open groove between the N2 and N3 domains. Strikingly, the disordered C-terminus in the apo-form reorganized into a highly-ordered loop and a β-strand G'' covering the ligand upon ligand binding. Bbp(Ala298-Gly301) in the N2 domain of the Bbp(273-598)-Fg α(561-575) complex, which is a loop in the apo-form, formed a short α-helix to interact tightly with the peptide. In addition, Bbp(Ser547-Gln561) in the N3 domain moved toward the binding groove to make contact directly with the peptide, while Bbp(Asp338-Gly355) and Bbp(Thr365-Tyr387) in N2 domain shifted their configurations to stabilize the reorganized C-terminus mainly through strong hydrogen bonds. Altogether, our results revealed the molecular basis for Bbp-ligand interaction and advanced our understanding of S. aureus infection process.
		                        		
		                        		
		                        		
		                        			Bacterial Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Crystallography, X-Ray
		                        			;
		                        		
		                        			Fibrinogen
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			Models, Molecular
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Peptide Fragments
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Binding
		                        			;
		                        		
		                        			Protein Structure, Tertiary
		                        			;
		                        		
		                        			Staphylococcus aureus
		                        			
		                        		
		                        	
8.Determining structural ensembles of flexible multi-domain proteins using small-angle X-ray scattering and molecular dynamics simulations.
Yonghui ZHANG ; Bin WEN ; Junhui PENG ; Xiaobing ZUO ; Qingguo GONG ; Zhiyong ZHANG
Protein & Cell 2015;6(8):619-623
		                        		
		                        		
		                        		
		                        			Algorithms
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Crystallography, X-Ray
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Magnetic Resonance Spectroscopy
		                        			;
		                        		
		                        			Molecular Dynamics Simulation
		                        			;
		                        		
		                        			Nuclear Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Principal Component Analysis
		                        			;
		                        		
		                        			Protein Structure, Tertiary
		                        			;
		                        		
		                        			Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Scattering, Small Angle
		                        			;
		                        		
		                        			X-Ray Diffraction
		                        			;
		                        		
		                        			methods
		                        			
		                        		
		                        	
9.Structural basis of PKM2 regulation.
Protein & Cell 2015;6(4):238-240
		                        		
		                        		
		                        		
		                        			Allosteric Regulation
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Glycolysis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Oxidative Phosphorylation
		                        			;
		                        		
		                        			Protein Conformation
		                        			;
		                        		
		                        			Protein Multimerization
		                        			;
		                        		
		                        			Protein Subunits
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Thyroid Hormones
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tumor Cells, Cultured
		                        			
		                        		
		                        	
10.Phosphorylation of Atg31 is required for autophagy.
Wenzhi FENG ; Tong WU ; Xiaoyu DAN ; Yuling CHEN ; Lin LI ; She CHEN ; Di MIAO ; Haiteng DENG ; Xinqi GONG ; Li YU
Protein & Cell 2015;6(4):288-296
		                        		
		                        			
		                        			Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17-Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.
		                        		
		                        		
		                        		
		                        			Alanine
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Amino Acid Motifs
		                        			;
		                        		
		                        			Aspartic Acid
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Autophagy-Related Proteins
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation, Fungal
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Models, Molecular
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			Nitrogen
		                        			;
		                        		
		                        			deficiency
		                        			;
		                        		
		                        			Phagosomes
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Protein Transport
		                        			;
		                        		
		                        			Saccharomyces cerevisiae
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Saccharomyces cerevisiae Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Serine
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Sirolimus
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail