1.The First Generation of iPSC Line from a Korean Alzheimer's Disease Patient Carrying APP-V715M Mutation Exhibits a Distinct Mitochondrial Dysfunction
Ling LI ; Jee Hoon ROH ; Hee Jin KIM ; Hyun Jung PARK ; Minchul KIM ; Wonyoung KOH ; Hyohoon HEO ; Jong Wook CHANG ; Mahito NAKANISHI ; Taeyoung YOON ; Duk L NA ; Jihwan SONG
Experimental Neurobiology 2019;28(3):329-336
Alzheimer's Disease (AD) is a progressive neurodegenerative disease, which is pathologically defined by the accumulation of amyloid plaques and hyper-phosphorylated tau aggregates in the brain. Mitochondrial dysfunction is also a prominent feature in AD, and the extracellular Aβ and phosphorylated tau result in the impaired mitochondrial dynamics. In this study, we generated an induced pluripotent stem cell (iPSC) line from an AD patient with amyloid precursor protein (APP) mutation (Val715Met; APP-V715M) for the first time. We demonstrated that both extracellular and intracellular levels of Aβ were dramatically increased in the APP-V715M iPSC-derived neurons. Furthermore, the APP-V715M iPSC-derived neurons exhibited high expression levels of phosphorylated tau (AT8), which was also detected in the soma and neurites by immunocytochemistry. We next investigated mitochondrial dynamics in the iPSC-derived neurons using Mito-tracker, which showed a significant decrease of anterograde and retrograde velocity in the APP-V715M iPSC-derived neurons. We also found that as the Aβ and tau pathology accumulates, fusion-related protein Mfn1 was decreased, whereas fission-related protein DRP1 was increased in the APP-V715M iPSC-derived neurons, compared with the control group. Taken together, we established the first iPSC line derived from an AD patient carrying APP-V715M mutation and showed that this iPSC-derived neurons exhibited typical AD pathological features, including a distinct mitochondrial dysfunction.
Alzheimer Disease
;
Amyloid
;
Brain
;
Carisoprodol
;
Humans
;
Immunohistochemistry
;
Mitochondrial Dynamics
;
Neurites
;
Neurodegenerative Diseases
;
Neurons
;
Pathology
;
Plaque, Amyloid
;
Pluripotent Stem Cells
2.Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors
Jihae OH ; Chiwoo LEE ; Bong Kiun KAANG
The Korean Journal of Physiology and Pharmacology 2019;23(4):237-249
Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.
Animals
;
Behavior, Animal
;
Brain
;
Calcium Channels
;
Calcium
;
Carisoprodol
;
Endoscopy
;
Fires
;
Fluorescence
;
Ions
;
Microscopy
;
Neuronal Calcium-Sensor Proteins
;
Neurons
;
Neurosciences
;
Statistics as Topic
3.Expression of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and the GDNF Family Receptor Alpha Subunit 1 in the Paravaginal Ganglia of Nulliparous and Primiparous Rabbits
Verónica GARCÍA-VILLAMAR ; Laura G HERNÁNDEZ-ARAGÓN ; Jesús R CHÁVEZ-RÍOS ; Arturo ORTEGA ; Margarita MARTÍNEZ-GÓMEZ ; Francisco CASTELÁN
International Neurourology Journal 2018;22(Suppl 1):S23-S33
PURPOSE: To evaluate the expression of glial cell line-derived neurotrophic factor (GDNF) and its receptor, GDNF family receptor alpha subunit 1 (GFRα-1) in the pelvic (middle third) vagina and, particularly, in the paravaginal ganglia of nulliparous and primiparous rabbits. METHODS: Chinchilla-breed female rabbits were used. Primiparas were killed on postpartum day 3 and nulliparas upon reaching a similar age. The vaginal tracts were processed for histological analyses or frozen for Western blot assays. We measured the ganglionic area, the Abercrombie-corrected number of paravaginal neurons, the cross-sectional area of the neuronal somata, and the number of satellite glial cells (SGCs) per neuron. The relative expression of both GDNF and GFRα-1 were assessed by Western blotting, and the immunostaining was semiquantitated. Unpaired two-tailed Student t -test or Wilcoxon test was used to identify statistically significant differences (P≤0.05) between the groups. RESULTS: Our findings demonstrated that the ganglionic area, neuronal soma size, Abercrombie-corrected number of neurons, and number of SGCs per neuron were similar in nulliparas and primiparas. The relative expression of both GDNF and GFRα-1 was similar. Immunostaining for both GDNF and GFRα-1 was observed in several vaginal layers, and no differences were detected regarding GDNF and GFRα-1 immunostaining between the 2 groups. In the paravaginal ganglia, the expression of GDNF was increased in neurons, while that of GFRα-1 was augmented in the SGCs of primiparous rabbits. CONCLUSIONS: The present findings suggest an ongoing regenerative process related to the recovery of neuronal soma size in the paravaginal ganglia, in which GDNF and GFRα-1 could be involved in cross-talk between neurons and SGCs.
Blotting, Western
;
Carisoprodol
;
Female
;
Ganglia
;
Ganglion Cysts
;
Glial Cell Line-Derived Neurotrophic Factor
;
Humans
;
Nerve Growth Factors
;
Neuroglia
;
Neuronal Plasticity
;
Neurons
;
Postpartum Period
;
Rabbits
;
Reproduction
;
Vagina
4.Regional difference in spontaneous firing inhibition by GABA(A) and GABA(B) receptors in nigral dopamine neurons.
Yumi KIM ; Jinyoung JANG ; Hyun Jin KIM ; Myoung Kyu PARK
The Korean Journal of Physiology and Pharmacology 2018;22(6):721-729
GABAergic control over dopamine (DA) neurons in the substantia nigra is crucial for determining firing rates and patterns. Although GABA activates both GABA(A) and GABA(B) receptors distributed throughout the somatodendritic tree, it is currently unclear how regional GABA receptors in the soma and dendritic compartments regulate spontaneous firing. Therefore, the objective of this study was to determine actions of regional GABA receptors on spontaneous firing in acutely dissociated DA neurons from the rat using patch-clamp and local GABA-uncaging techniques. Agonists and antagonists experiments showed that activation of either GABA(A) receptors or GABA(B) receptors in DA neurons is enough to completely abolish spontaneous firing. Local GABA-uncaging along the somatodendritic tree revealed that activation of regional GABA receptors limited within the soma, proximal, or distal dendritic region, can completely suppress spontaneous firing. However, activation of either GABA(A) or GABA(B) receptor equally suppressed spontaneous firing in the soma, whereas GABA(B) receptor inhibited spontaneous firing more strongly than GABA(A) receptor in the proximal and distal dendrites. These regional differences of GABA signals between the soma and dendritic compartments could contribute to our understanding of many diverse and complex actions of GABA in midbrain DA neurons.
Animals
;
Carisoprodol
;
Dendrites
;
Dopamine*
;
Dopaminergic Neurons*
;
Fires*
;
gamma-Aminobutyric Acid
;
Mesencephalon
;
Neurons
;
Rats
;
Receptors, GABA
;
Receptors, GABA-A
;
Substantia Nigra
;
Trees
5.Expression of µ-Opioid Receptor in CA1 Hippocampal Astrocytes.
Min Ho NAM ; Kyung Seok HAN ; Jaekwang LEE ; Jin Young BAE ; Heeyoung AN ; Seahyung PARK ; Soo Jin OH ; Eunju KIM ; Eunmi HWANG ; Yong Chul BAE ; C Justin LEE
Experimental Neurobiology 2018;27(2):120-128
µ-opioid receptor (MOR) is a class of opioid receptors with a high affinity for enkephalins and beta-endorphin. In hippocampus, activation of MOR is known to enhance the neuronal excitability of pyramidal neurons, which has been mainly attributed to a disinhibition of pyramidal neurons via activating Gαi subunit to suppress the presynaptic release of GABA in hippocampal interneurons. In contrast, the potential role of MOR in hippocampal astrocytes, the most abundant cell type in the brain, has remained unexplored. Here, we determine the cellular and subcellular distribution of MOR in different cell types of the hippocampus by utilizing MOR-mCherry mice and two different antibodies against MOR. Consistent with previous findings, we demonstrate that MOR expression in the CA1 pyramidal layer is co-localized with axon terminals from GABAergic inhibitory neurons but not with soma of pyramidal neurons. More importantly, we demonstrate that MOR is highly expressed in CA1 hippocampal astrocytes. The ultrastructural analysis further demonstrates that the astrocytic MOR is localized in soma and processes, but not in microdomains near synapses. Lastly, we demonstrate that astrocytes in ventral tegmental area and nucleus accumbens also express MOR. Our results provide the unprecedented evidence for the presence of MOR in astrocytes, implicating potential roles of astrocytic MOR in addictive behaviors.
Animals
;
Antibodies
;
Astrocytes*
;
Behavior, Addictive
;
beta-Endorphin
;
Brain
;
Carisoprodol
;
Enkephalins
;
gamma-Aminobutyric Acid
;
Hippocampus
;
Interneurons
;
Mice
;
Microscopy, Electron
;
Neurons
;
Nucleus Accumbens
;
Presynaptic Terminals
;
Pyramidal Cells
;
Receptors, Opioid
;
Synapses
;
Ventral Tegmental Area
6.Functional Characterization of Resting and Adenovirus-Induced Reactive Astrocytes in Three-Dimensional Culture.
Junsung WOO ; Sun Kyoung IM ; Heejung CHUN ; Soon Young JUNG ; Soo Jin OH ; Nakwon CHOI ; C Justin LEE ; Eun Mi HUR
Experimental Neurobiology 2017;26(3):158-167
Brain is a rich environment where neurons and glia interact with neighboring cells as well as extracellular matrix in three-dimensional (3D) space. Astrocytes, which are the most abundant cells in the mammalian brain, reside in 3D space and extend highly branched processes that form microdomains and contact synapses. It has been suggested that astrocytes cultured in 3D might be maintained in a less reactive state as compared to those growing in a traditional, two-dimensional (2D) monolayer culture. However, the functional characterization of the astrocytes in 3D culture has been lacking. Here we cocultured neurons and astrocytes in 3D and examined the morphological, molecular biological, and electrophysiological properties of the 3D-cultured hippocampal astrocytes. In our 3D neuron-astrocyte coculture, astrocytes showed a typical morphology of a small soma with many branches and exhibited a unique membrane property of passive conductance, more closely resembling their native in vivo counterparts. Moreover, we also induced reactive astrocytosis in culture by infecting with high-titer adenovirus to mimic pathophysiological conditions in vivo. Adenoviral infection induced morphological changes in astrocytes, increased passive conductance, and increased GABA content as well as tonic GABA release, which are characteristics of reactive gliosis. Together, our study presents a powerful in vitro model resembling both physiological and pathophysiological conditions in vivo, and thereby provides a versatile experimental tool for studying various neurological diseases that accompany reactive astrocytes.
Adenoviridae
;
Astrocytes*
;
Brain
;
Carisoprodol
;
Coculture Techniques
;
Extracellular Matrix
;
gamma-Aminobutyric Acid
;
Gliosis
;
In Vitro Techniques
;
Membranes
;
Neuroglia
;
Neurons
;
Synapses
7.Distribution and Function of the Bestrophin-1 (Best1) Channel in the Brain.
Experimental Neurobiology 2017;26(3):113-121
Bestrophin-1 (Best1) is a calcium-activated anion channel identified from retinal pigment epithelium where human mutations are associated with Best's macular degeneration. Best1 is known to be expressed in a variety of tissues including the brain, and is thought to be involved in many physiological processes. This review focuses on the current state of knowledge on aspects of expression and function of Best1 in the brain. Best1 protein is observed in cortical and hippocampal astrocytes, in cerebellar Bergmann glia and lamellar astrocytes, in thalamic reticular neurons, in meninges and in the epithelial cells of the choroid plexus. The most prominent feature of Best1 is its significant permeability to glutamate and GABA in addition to chloride ions because glutamate and GABA are important transmitters in the brain. Under physiological conditions, both Best1-mediated glutamate release and tonic GABA release from astrocytes modulate neuronal excitability, synaptic transmission and synaptic plasticity. Under pathological conditions such as neuroinflammation and neurodegeneration, reactive astrocytes phenotypically switch from GABA-negative to GABA-producing and redistribute Best1 from the perisynaptic microdomains to the soma and processes to tonically release GABA via Best1. This implicates that tonic GABA release from reactive astrocyte via redistributed Best1 is a common phenomenon that occur in various pathological conditions with astrogliosis such as traumatic brain injury, neuroinflammation, neurodegeneration, and hypoxic and ischemic insults. These properties of Best1, including the permeation and release of glutamate and GABA and its redistribution in reactive astrocytes, promise us exciting discoveries of novel brain functions to be uncovered in the future.
Astrocytes
;
Brain Injuries
;
Brain*
;
Carisoprodol
;
Choroid Plexus
;
Epithelial Cells
;
gamma-Aminobutyric Acid
;
Glutamic Acid
;
Humans
;
Ions
;
Macular Degeneration
;
Meninges
;
Neuroglia
;
Neuronal Plasticity
;
Neurons
;
Permeability
;
Physiological Processes
;
Retinal Pigment Epithelium
;
Synaptic Transmission
8.Relationship between Microglial Activation and Dopaminergic Neuronal Loss in 6-OHDA-induced Parkinsonian Animal Model.
Jin Suk LEE ; Ji Yong LEE ; Won Gil CHO ; Young Chul YANG ; Byung Pil CHO
Korean Journal of Physical Anthropology 2013;26(1):13-23
This study assessed the dynamics of morphological and immunophenotypic properties of activated microglia in a 6-hydroxydopamine (6-OHDA) induced Parkinsonian animal model. Neurodegeneration in the substantia nigra pars compacta (SNc) was induced by unilateral injection of 6-OHDA into the medial forebrain bundle. Parkinsonian animal model were sacrificed at 1, 2, 4 and 8 weeks after 6-OHDA injection. Changes in the functional activity of activated microglia were identified using different monoclonal antibodies: OX6 for major histocompatibility complex (MHC) class II, ED1 for phagocytic activity. Phagocytic microglia, characterized by ED1- or OX6-immunoreactivity, appeared in the SNc at 1 week after 6-OHDA injection, activated microglia selectively adhered to degenerating axons, dendrites and dopaminergic neuron somas in the SNc. This was followed by significant loss of these fibers and nigral dopaminergic neurons. Activation of microglia into phagocytic stage was most pronounced at 2 week after 6-OHDA injection and gradually subsided, but phagocytic microglia persisted until 8 weeks after 6-OHDA injection. Taken together, our results indicate that activated microglia is lead to persistently neuron cell death and promotes loss of dopaminergic neuron by degeneration of the dopaminergic neurons.
Animals
;
Axons
;
Carisoprodol
;
Cell Death
;
Dendrites
;
Dopaminergic Neurons
;
Major Histocompatibility Complex
;
Medial Forebrain Bundle
;
Microglia
;
Models, Animal
;
Neurons
;
Oxidopamine
;
Substantia Nigra
9.Nestin expressing progenitor cells during establishment of the neural retina and its vasculature.
Jong Hyun LEE ; Hyo Suk PARK ; Ji Man SHIN ; Myung Hoon CHUN ; Su Ja OH
Anatomy & Cell Biology 2012;45(1):38-46
In order to test if nestin is a useful marker for various types of progenitor cells, we explored nestin expression in the retina during development. Nestin expression was co-evaluated with bromodeoxyuridine (BrdU) labeling and Griffonia simplicifolia isolectin B4 (GSIB4) histochemistry. Nestin immunoreactivity appears in cell soma of dividing neural progenitor cells and their leading processes in retinas from embryonic day (E) 13 to E20, in accordance with a BrdU-labeled pattern. At postnatal day (P) 5, it is restricted to the end feet of Muller cells. BrdU-labeled nuclei were mainly in the inner part of the inner nuclear layer in postnatal neonates. The retinal vessels demarcated with GSIB4-positive endothelial cells were first distributed in the nerve fiber layer from P3. Afterward the vascular branches sprouted and penetrated deeply into the retina. The endothelial cells positive for GSIB4 and the pericytes in the microvessels were additionally immunoreactive for nestin. Interestingly, the presumed migrating microglial cells showing only GSIB4 reactivity preceded the microvessels throughout the neuroblast layer during vascular sprouting and extension. These findings may suggest that nestin expression represents the proliferation and movement potential of the neural progenitor cells as well as the progenitor cells of the endothelial cell and the pericyte during retinal development. Thus, Muller glial cells might be potential neural progenitor cells of the retina, and the retinal microvasculature established by both the endothelial and the pericyte progenitor cells via vasculogenesis along microglia migrating routes sustains its angiogenic potential.
Bromodeoxyuridine
;
Carisoprodol
;
Endothelial Cells
;
Foot
;
Griffonia
;
Humans
;
Infant, Newborn
;
Intermediate Filament Proteins
;
Lectins
;
Microglia
;
Microvessels
;
Nerve Fibers
;
Nerve Tissue Proteins
;
Neurogenesis
;
Neuroglia
;
Pericytes
;
Plant Lectins
;
Retina
;
Retinal Vessels
;
Retinaldehyde
;
Stem Cells
10.Sustained K+ Outward Currents are Sensitive to Intracellular Heteropodatoxin2 in CA1 Neurons of Organotypic Cultured Hippocampi of Rats.
The Korean Journal of Physiology and Pharmacology 2012;16(5):343-348
Blocking or regulating K+ channels is important for investigating neuronal functions in mammalian brains, because voltage-dependent K+ channels (Kv channels) play roles to regulate membrane excitabilities for synaptic and somatic processings in neurons. Although a number of toxins and chemicals are useful to change gating properties of Kv channels, specific effects of each toxin on a particular Kv subunit have not been sufficiently demonstrated in neurons yet. In this study, we tested electrophysiologically if heteropodatoxin2 (HpTX2), known as one of Kv4-specific toxins, might be effective on various K+ outward currents in CA1 neurons of organotypic hippocampal slices of rats. Using a nucleated-patch technique and a pre-pulse protocol in voltage-clamp mode, total K+ outward currents recorded in the soma of CA1 neurons were separated into two components, transient and sustained currents. The extracellular application of HpTX2 weakly but significantly reduced transient currents. However, when HpTX2 was added to internal solution, the significant reduction of amplitudes were observed in sustained currents but not in transient currents. This indicates the non-specificity of HpTX2 effects on Kv4 family. Compared with the effect of cytosolic 4-AP to block transient currents, it is possible that cytosolic HpTX2 is pharmacologically specific to sustained currents in CA1 neurons. These results suggest that distinctive actions of HpTX2 inside and outside of neurons are very efficient to selectively reduce specific K+ outward currents.
Animals
;
Brain
;
Carisoprodol
;
Cytosol
;
Humans
;
Membranes
;
Neurons
;
Rats

Result Analysis
Print
Save
E-mail