1.Ginsenoside Rg_3 based liposomes target delivery of dihydroartemisinin and paclitaxel for treatment of triple-negative breast cancer.
Hua LIU ; Yi LIU ; Na LI ; Guo-Qin ZHANG ; Meng WANG
China Journal of Chinese Materia Medica 2023;48(13):3472-3484
Ginsenoside Rg_3, an active component of traditional Chinese medicine(TCM), was used as the substitute for cholesterol as the membrane material to prepare the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin and paclitaxel. The effect of the prepared drug-loading liposomes on triple-negative breast cancer in vitro was evaluated. Liposomes were prepared with the thin film hydration method, and the preparation process was optimized by single factor experiments. The physicochemical properties(e.g., particle size, Zeta potential, and stability) of the liposomes were characterized. The release behaviors of drugs in different media(pH 5.0 and pH 7.4) were evaluated. The antitumor activities of the liposomes were determined by CCK-8 on MDA-MB-231 and 4T1 cells. The cell scratch test was carried out to evaluate the effect of the liposomes on the migration of MDA-MB-231 and 4T1 cells. Further, the targeting ability of liposomes and the mechanism of lysosome escape were investigated. Finally, H9c2 cells were used to evaluate the potential cardiotoxicity of the preparation. The liposomes prepared were spheroid, with uniform particle size distribution, the ave-rage particle size of(107.81±0.01) nm, and the Zeta potential of(2.78±0.66) mV. The encapsulation efficiency of dihydroartemisinin and paclitaxel was 57.76%±1.38% and 99.66%±0.07%, respectively, and the total drug loading was 4.46%±0.71%. The accumulated release of dihydroartemisinin and paclitaxel from the liposomes at pH 5.0 was better than that at pH 7.4, and the liposomes could be stored at low temperature for seven days with good stability. Twenty-four hours after administration, the inhibition rates of the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin(70 μmol·L~(-1)) and paclitaxel on MDA-MB-231 and 4T1 cells were higher than those of the positive control(adriamycin) and free drugs(P<0.01). Compared with free drugs, liposomes inhibited the migration of MDA-MB-231 and 4T1 cells(P<0.05). Liposomes demonstrated active targeting and lysosome escape. In particular, liposomes showed lower toxicity to H9c2 cells than free drugs(P<0.05), which indicated that the preparation had the potential to reduce cardiotoxicity. The findings prove that ginsenoside Rg_3 characterized by the combination of drug and excipient is an ideal substitute for lipids in liposomes and promoted the development of innovative TCM drugs for treating cancer.
Humans
;
Paclitaxel/pharmacology*
;
Liposomes/chemistry*
;
Ginsenosides/therapeutic use*
;
Triple Negative Breast Neoplasms/drug therapy*
;
Cardiotoxicity/drug therapy*
;
Cell Line, Tumor
2.Structural characterization, in vivo toxicity and biological activity of two new pyro-type diterpenoid alkaloids derived from 3-acetylaconitine.
Yu-Jie WANG ; Yan WANG ; Pei TAO
Journal of Integrative Medicine 2023;21(3):302-314
OBJECTIVE:
The transformations that occur in diterpenoid alkaloids during the process of sand frying for Chinese herbal medicine preparation have yet to be clarified. This study investigated the structural changes that take place in 3-acetylaconitine during a simulation of heat-processing and evaluated the toxicity and biological activity of the pyrolysis products.
METHODS:
The diterpenoid alkaloid 3-acetylaconitine was heated at 180 °C for 15 min to simulate the process of sand frying. The pyrolysis products were separated using column chromatography, and their structures were investigated using high-resolution electrospray ionization mass spectroscopy and nuclear magnetic resonance spectroscopy. Further, in vivo cardiotoxicity and acute toxicity of 3-acetylaconitine and its pyrolysis products were compared, and the aconitine-induced arrhythmia model was employed to evaluate the antiarrhythmic effect of the pyrolysis products.
RESULTS:
Two new diterpenoid alkaloids, pyroacetylaconitine and 16-epi-pyroacetylaconitine, a pair of epimers at C-16, were isolated. After comparing the structures of these compounds, possible transformation pathways were proposed. Compared with the prototype compound, 3-acetylaconitine, the cardiotoxicity and acute toxicity of the heat-transformed products were significantly decreased. In the biological activity assay, the two pyrolysis products exhibited an effective increase in ventricular premature beat latency, a reduction in the occurrence of ventricular tachycardia, as well as an increase in the rate of arrhythmia inhibition, implying strong antiarrhythmic activity.
CONCLUSION
Compared with 3-acetylaconitine, its pyrolysis products displayed lower toxicity and good antiarrhythmic effects; thus, they have potential for being developed into antiarrhythmic medicines. Please cite this article as: Wang YJ, Wang Y, Tao P. Structural characterization, in vivo toxicity and biological activity of two new pyro-type diterpenoid alkaloids derived from 3-acetylaconitine. J Integr Med. 2023; 21(3): 302-314.
Humans
;
Aconitine/chemistry*
;
Cardiotoxicity
;
Sand
;
Alkaloids/toxicity*
;
Arrhythmias, Cardiac/drug therapy*
;
Diterpenes/toxicity*
3.Ginsenoside Rg1 Reduces Cardiotoxicity While Increases Cardiotonic Effect of Aconitine in vitro.
Xin XU ; Xiao-Fang XIE ; Yan-Hong DONG ; Hui-Qiong ZHANG ; Cheng PENG
Chinese journal of integrative medicine 2022;28(8):693-701
OBJECTIVE:
To explore the synergic mechanism of ginsenoside Rg1 (Rg1) and aconitine (AC) by acting on normal neonatal rat cardiomyocytes (NRCMs) and pentobarbital sodium (PS)-induced damaged NRCMs.
METHODS:
The toxic, non-toxic, and effective doses of AC and the most suitable compatibility concentration of Rg1 for both normal and damaged NRCMs exposed for 1 h were filtered out by 3- (4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide, respectively. Then, normal NRCMs or impaired NRCMs were treated with chosen concentrations of AC alone or in combination with Rg1 for 1 h, and the cellular activity, cellular ultrastructure, apoptosis, leakage of acid phosphatase (ACP) and lactate dehydrogenase (LDH), intracellular sodium ions [Na+], potassium ions [K+] and calcium ions [Ca2+] levels, and Nav1.5, Kv4.2, and RyR2 genes expressions in each group were examined.
RESULTS:
For normal NRCMs, 3000 µ mol/L AC significantly inhibited cell viability (P<0.01), promoted cell apoptosis, and damaged cell structures (P<0.05), while other doses of AC lower than 3000 µ mol/L and the combinations of AC and Rg1 had little toxicity on NRCMs. Compared with AC acting on NRCMs alone, the co-treatment of 3000 and 10 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ (P<0.01 or P<0.05), and the co-treatment of 3000 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ via regulating Nav1.5, RyR2 expression (P<0.01). For damaged NRCMs, 1500 µ mol/L AC aggravated cell damage (P<0.01), and 0.1 and 0.001 µ mol/L AC showed moderate protective effect. Compared with AC used alone, the co-treatment of Rg1 with AC reduced the cell damage, 0.1 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular Na+ (P<0.05), 1500 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular K+ (P<0.01) via regulating Nav1.5, Kv4.2, RyR2 expressions in impaired NRCMs.
CONCLUSION
Rg1 inhibited the cardiotoxicity and enhanced the cardiotonic effect of AC via regulating the ion channels pathway of [Na+], [K+], and [Ca2+].
Aconitine/pharmacology*
;
Animals
;
Apoptosis
;
Cardiotonic Agents/pharmacology*
;
Cardiotoxicity/drug therapy*
;
Cell Survival
;
Ginsenosides/pharmacology*
;
Rats
5.Research Progress of Immune Checkpoint Inhibitor-associated Myocarditis.
Yunwei LIU ; Yanxin CHEN ; Zhimin ZENG ; Anwen LIU
Chinese Journal of Lung Cancer 2021;24(9):668-672
Immune checkpoint inhibitors (ICIs) is a negative regulatory factor antibody, which activates T cells to play an anti-tumor effect in immunotherapy, and can also cause immune-related adverse responses, thereby inducing a series of immune related adverse events (irAEs). Among these irAEs, although the incidence of ICIs-related myocarditis is very low, the fatality rate is significantly higher than other adverse reactions, close to 50%. Clinicians should be vigilant when applying ICIs, but the pathogenesis of ICIs-related myocarditis is still unclear. This article combines the recent research results of ICIs to summarize the mechanism and clinical manifestations of ICIs-related myocarditis, so as to improve clinicians' understanding of the adverse reactions.
.
Biomedical Research/trends*
;
Cardiotoxicity/physiopathology*
;
Humans
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Immunotherapy/adverse effects*
;
Myocarditis/physiopathology*
;
Neoplasms/drug therapy*
6.Pharmacovigilance study on drug-induced cardiac injury during treatment of COVID-19.
Dan ZHANG ; Jin-Tao LYU ; Bing ZHANG ; Xiao-Meng ZHANG ; Zhi-Jian LIN
China Journal of Chinese Materia Medica 2020;45(10):2275-2286
Because coronavirus disease 2019(COVID-19) is highly contagious and serious, it has posed a major threat to public health worldwide. The curative effects of integrated traditional Chinese medicine and Western medicine in the treatment of COVID-19 have been widely recognized and confirmed. However, medical workers shall pay attention to drug-induced heart injury in clinical application. Based on the guideline from the Diagnosis and Treatment Plans for COVID-19(trial seventh edition), taking the recommended drugs as examples, by Western medicine, traditional Chinese medicine, Chinese herbal injection and integrated traditional Chinese and Western medicine, the study analyzed the basic characteristics of recommended drugs for cardiac injury by means of literature review and bioinformatics methods, and summarized cardiac adverse reactions, toxicity mechanisms, combined pharmacotherapy, special population and drug monitoring, focusing on the clinical manifestations, toxic components, targets and regulatory mechanisms of drug-induced cardiac injury. The findings suggested being vigilant to drug-induced cardiac injury during the treatment of COVID-19, playing the advantages of clinical pharmacists and clinical Chinese pharmacists, improving the knowledge reserve of pharmacovigilance, strengthening the prescription review, medication notification and medication monitoring, promoting rational drug use and paying attention to special populations and high-risk groups. The study aims to provide suggestions and reference for pharmacovigilance and pharmaceutical care for front-line doctors and pharmacists against COVID-19, in order to avoid the occurrence of drug-induced heart injury for patients with COVID-19.
Betacoronavirus
;
Cardiotoxicity
;
Coronavirus Infections
;
drug therapy
;
Drugs, Chinese Herbal
;
Heart Injuries
;
chemically induced
;
Humans
;
Medicine, Chinese Traditional
;
Pandemics
;
Pharmacovigilance
;
Pneumonia, Viral
7.Correlation of UGT2B7 Polymorphism with Cardiotoxicity in Breast Cancer Patients Undergoing Epirubicin/Cyclophosphamide-Docetaxel Adjuvant Chemotherapy.
Hai LI ; Bo HU ; Zhe GUO ; Xueqing JIANG ; Xinyu SU ; Xiaoyi ZHANG
Yonsei Medical Journal 2019;60(1):30-37
PURPOSE: The present study aimed to investigate correlations between uridine glucuronosyltransferase 2B7 (UGT2B7) -161 single nucleotide polymorphism C to T (C>T) and the occurrence of cardiotoxicity in Chinese breast cancer (BC) patients undergoing epirubicin/cyclophosphamide-docetaxel (EC-D) adjuvant chemotherapy. MATERIALS AND METHODS: 427 BC patients who had underwent surgery were consecutively enrolled in this prospective cohort study. All patients were scheduled to receive EC-D adjuvant chemotherapy regimen, and they were divided into UGT2B7 -161 CC (n=141), UGT2B7 -161 CT (n=196), and UGT2B7 -161 TT (n=90) groups according to their genotypes. Polymerase chain reaction was performed for determination of UGT2B7 -161 genotypes. Cardiotoxicity was defined as an absolute decline in left ventricular ejection fraction (LVEF) of at least 10% points from baseline to a value less than 53%, heart failure, acute coronary artery syndrome, or fatal arrhythmia. RESULTS: LVEF values were lower at cycle (C) 4, C8, 3 months after chemotherapy (M3), M6, M9, and M12 compared to C0 (all p < 0.001), in BC patients undergoing EC-D adjuvant chemotherapy. Cardiotoxicity was recorded for 4.2% of the overall population and was lowest in the UGT2B7 -161 TT group (1.1%), compared to UGT2B7 -161 CT (3.1%) and UGT2B7 -161 CC (7.8%) group (p=0.026). Multivariate logistic regression revealed that UGT2B7 -161 T allele could independently predict a low occurrence of cardiotoxicity in BC patients undergoing EC-D adjuvant chemotherapy (p=0.004). CONCLUSION: A UGT2B7 -161 T allele serves as a potential biomarker for predicting a low occurrence of cardiotoxicity in BC patients undergoing EC-D adjuvant chemotherapy.
Alleles
;
Arrhythmias, Cardiac
;
Asian Continental Ancestry Group
;
Breast Neoplasms*
;
Breast*
;
Cardiotoxicity*
;
Chemotherapy, Adjuvant*
;
Cohort Studies
;
Coronary Vessels
;
Drug Therapy
;
Genotype
;
Glucuronosyltransferase
;
Heart Failure
;
Humans
;
Logistic Models
;
Polymerase Chain Reaction
;
Polymorphism, Single Nucleotide
;
Prospective Studies
;
Stroke Volume
;
Uridine
8.Clinical and pharmacological application of multiscale multiphysics heart simulator, UT-Heart
Jun Ichi OKADA ; Takumi WASHIO ; Seiryo SUGIURA ; Toshiaki HISADA
The Korean Journal of Physiology and Pharmacology 2019;23(5):295-303
A heart simulator, UT-Heart, is a finite element model of the human heart that can reproduce all the fundamental activities of the working heart, including propagation of excitation, contraction, and relaxation and generation of blood pressure and blood flow, based on the molecular aspects of the cardiac electrophysiology and excitation-contraction coupling. In this paper, we present a brief review of the practical use of UT-Heart. As an example, we focus on its application for predicting the effect of cardiac resynchronization therapy (CRT) and evaluating the proarrhythmic risk of drugs. Patient-specific, multiscale heart simulation successfully predicted the response to CRT by reproducing the complex pathophysiology of the heart. A proarrhythmic risk assessment system combining in vitro channel assays and in silico simulation of cardiac electrophysiology using UT-Heart successfully predicted druginduced arrhythmogenic risk. The assessment system was found to be reliable and efficient. We also developed a comprehensive hazard map on the various combinations of ion channel inhibitors. This in silico electrocardiogram database (now freely available at http://ut-heart.com/) can facilitate proarrhythmic risk assessment without the need to perform computationally expensive heart simulation. Based on these results, we conclude that the heart simulator, UT-Heart, could be a useful tool in clinical medicine and drug discovery.
Blood Pressure
;
Cardiac Electrophysiology
;
Cardiac Resynchronization Therapy
;
Cardiotoxicity
;
Clinical Medicine
;
Computer Simulation
;
Drug Discovery
;
Drug Evaluation, Preclinical
;
Electrocardiography
;
Heart
;
Humans
;
In Vitro Techniques
;
Ion Channels
;
Models, Cardiovascular
;
Relaxation
;
Risk Assessment
9.Emergence, development, and future of cardio-oncology in China: cardiohypersensitivity, cardiotoxicity and the Kounis syndrome.
Nicholas G KOUNIS ; Ioanna KONIARI ; Panagiotis PLOTAS ; George D SOUFRAS ; Grigorios TSIGKAS ; Periklis DAVLOUROS ; George HAHALIS
Chinese Medical Journal 2019;132(6):753-754
Afatinib
;
therapeutic use
;
Carcinoma, Squamous Cell
;
drug therapy
;
Cardiotoxicity
;
China
;
Cisplatin
;
therapeutic use
;
Coronary Artery Disease
;
drug therapy
;
Deoxycytidine
;
analogs & derivatives
;
therapeutic use
;
Humans
;
Kounis Syndrome
;
drug therapy
;
Male
;
Medical Oncology
;
statistics & numerical data
;
trends
;
Middle Aged
10.Diagnosis, Treatment, and Prevention of Cardiovascular Toxicity Related to Anti-Cancer Treatment in Clinical Practice: An Opinion Paper from the Working Group on Cardio-Oncology of the Korean Society of Echocardiography.
Hyungseop KIM ; Woo Baek CHUNG ; Kyoung Im CHO ; Bong Joon KIM ; Jeong Sook SEO ; Seong Mi PARK ; Hak Jin KIM ; Ju Hee LEE ; Eun Kyoung KIM ; Ho Joong YOUN
Journal of Cardiovascular Ultrasound 2018;26(1):1-25
Cardiovascular (CV) toxicity associated with anti-cancer treatment is commonly encountered and raises critical problems that often result in serious morbidity or mortality. Most cardiac toxicities are related to the cumulative dose of chemotherapy; however, the type of chemotherapy, concomitant agents, and/or conventional CV risk factors have been frequently implicated in CV toxicity. Approximately half of the patients exhibiting CV toxicity receive an anthracycline-based regimen. Therefore, serologic biomarkers or cardiac imagings are important during anti-cancer treatment for early detection and the decision of appropriate management of cardiotoxicity. However, given the difficulty in determining a causal relationship, a multidisciplinary collaborative approach between cardiologists and oncologists is required. In this review, we summarize the CV toxicity and focus on the role of cardiac imaging in management strategies for cardiotoxicity associated with anti-cancer treatment.
Biomarkers
;
Cardiotoxicity
;
Diagnosis*
;
Drug Therapy
;
Echocardiography*
;
Humans
;
Mortality
;
Risk Factors

Result Analysis
Print
Save
E-mail