2.Clinical characteristics of Danon disease.
Wu Wan WANG ; Yuan Yuan ZHU ; Wei WU ; Da Chun ZHAO ; Xue LIN ; Li Gang FANG ; Shu Yang ZHANG
Chinese Journal of Cardiology 2023;51(1):51-57
Objective: To review the clinical data of 7 patients with Danon disease and analyze their clinical characteristics. Methods: The medical records of 7 patients with Danon disease, who were hospitalized in Peking Union Medical College Hospital of Chinese Academy of Medical Sciences from April 2008 to July 2021, were reviewed and summarized, of which 6 cases were diagnosed as Danon disease by lysosomal-associated membrane protein-2 (LAMP-2) gene mutation detection and 1 case was diagnosed by clinicopathological features. Clinical manifestations, biochemical indexes, electrocardiogram, echocardiography, skeletal muscle and myocardial biopsy and gene detection results were analyzed, and patients received clinical follow-up after discharge. Results: Six patients were male and average age was (15.4±3.5) years and the average follow-up time was (27.7±17.0) months. The main clinical manifestations were myocardial hypertrophy (6/7), decreased myodynamia (2/7) and poor academic performance (3/7). Electrocardiogram features included pre-excitation syndrome (6/7) and left ventricular hypertrophy (7/7). Echocardiography examination evidenced myocardial hypertrophy (6/7), and left ventricular dilatation and systolic dysfunction during the disease course (1/7). The results of skeletal muscle biopsy in 6 patients were consistent with autophagy vacuolar myopathy. Subendocardial myocardial biopsy was performed in 3 patients, and a large amount of glycogen deposition with autophagosome formation was found in cardiomyocytes. LAMP-2 gene was detected in 6 patients, and missense mutations were found in all these patients. During the follow-up period, implantable cardioverter defibrillator implantation was performed in 1 patient because of high atrioventricular block 4 years after diagnosis, and there was no death or hospitalization for cardiovascular events in the other patients. Conclusion: The main clinical manifestations of Danon disease are cardiomyopathy, myopathy and mental retardation. Pre-excitation syndrome is a common electrocardiographic manifestation. Autophagy vacuoles can be seen in skeletal muscle and myocardial pathological biopsies. LAMP-2 gene mutation analysis is helpful in the diagnose of this disease.
Adolescent
;
Child
;
Female
;
Humans
;
Male
;
Cardiomyopathies/etiology*
;
Glycogen Storage Disease Type IIb/complications*
;
Hypertrophy, Left Ventricular/etiology*
;
Lysosomal-Associated Membrane Protein 2/genetics*
;
Pre-Excitation Syndromes/genetics*
3.Analysis of blood carnitine profile and SLC22A5 gene variants in 17 neonates with Primary carnitine deficiency.
Weiting SONG ; Sheng YE ; Lizhu ZHENG
Chinese Journal of Medical Genetics 2023;40(2):161-165
OBJECTIVE:
To analyze the blood free carnitine (C0) level and SLC22A5 gene variants in 17 neonates with Primary carnitine deficiency (PCD) and to determine its incidence in local area and explore the correlation between C0 level and genotype.
METHODS:
148 043 newborns born in 9 counties (cities and districts) of Ningde city from September 2016 to June 2021 were selected as study subjects. Blood free carnitine and acyl carnitine of 148 043 neonates were analyzed. Variants of the SLC22A5 gene were screened in those with blood C0 < 10 µmol/L, or C0 between 10 ∼ 15 µmol/L. Correlation between the free carnitine level and genetic variants was analyzed.
RESULTS:
In total 17 neonates were diagnosed with PCD, which yielded a prevalence of 1/8 707 in the region. Twelve variants of the SLC22A5 gene were identified, with the common ones including c.760C>T, c.1400C>G and c.51C>G. Compared with those carrying other variants of the gene, children carrying the c.760C>T variant had significantly lower C0 values (P < 0.01).
CONCLUSION
The prevalence of PCD is relatively high in Ningde area, and intervention measures should be taken to prevent and control the disease. The c. 760C>T variant is associated with lower level of C0, which can provide a clue for the diagnosis.
Humans
;
Infant, Newborn
;
Cardiomyopathies/diagnosis*
;
Carnitine
;
Hyperammonemia/diagnosis*
;
Muscular Diseases/genetics*
;
Solute Carrier Family 22 Member 5/genetics*
4.Investigation on the differentially expressed circular RNAs in myocardium of mice with diabetic cardiomyopathy.
Xiao Guang WU ; Shu Chen ZHANG ; Xiang ZHOU
Chinese Journal of Cardiology 2022;50(5):501-508
Objective: To identify the differentially expressed circular RNA (circRNA) in the myocardium of diabetic cardiomyopathy (DCM) mice, and analyze their possible biological functions and related regulatory network. Methods: C57BL/6 mice, aged 8 weeks, and weighing were 21-27 g. Eight mice were selected as the control group and 15 mice were selected as the experimental group. The diabetic mice model was established by intraperitoneal injection of streptozotocin in the experimental group. One week after injection, the fasting blood glucose level of mice was measured, and 12 diabetic mice were included in the final experimental group. All mice were fed for 12 weeks under the same laboratory conditions. The cardiac structure and function were detected by echocardiography. Diabetic mice with the left ventricular ejection fraction less than 60% and the E/A less than 1.6 were selected as DCM group (n=3). Mice in DCM group and control group were then sacrificed under deep anesthesia. RNA was extracted from myocardial tissue. High-throughput RNA sequencing technology was used to sequence and identify the RNA in the myocardial tissue of DCM group and normal control group, and the difference was analyzed by DeSeq2. The analysis results were verified at the tissue level by RT-qPCR, and the differential circRNA were analyzed by GO and KEGG pathway analysis. The differentially expressed circRNA-microRNA(miRNA) interaction was predicted by the miRNA target gene prediction software. Results: A total of 63 differentially expressed circRNAs were found in the myocardium of DCM mice. The results of RT-qPCR showed that the tissue level expression of 8 differentially expressed circRNAs was consistent with the sequencing results, of which 7 were up-regulated and 1 was down-regulated. KEGG pathway analysis showed that the up-regulated circRNAs was mainly related to AMPK signal pathway and intercellular adhesion junction pathway, and the down-regulated circRNA was mainly related to cardiomyopathy. Go analysis showed that the up-regulated circRNA was mainly related to the binding process of ions, proteins, kinases and other factors in terms of molecular function, and was involved in regulating the intracellular structure, especially the composition of organelles in terms of cell components. The functional analysis of molecular function and cell components showed that the up-regulated circRNA were related to the cell component origin, recruitment and tissue, and thus participated in the regulation of cell biological process. The down regulated circRNA was related to catalytic activity in terms of molecular function, protein kinase binding process, transferase and calmodulin activity, and was closely related to the components of contractile fibers and the composition of myofibrils. These differentially expressed circRNAs were also related to biological processes such as lysine peptide modification, sarcomere composition, myofibril assembly, morphological development of myocardial tissue, myocardial hypertrophy and so on. Conclusions: In this study, we detected the novel differentially expressed circRNAs in the myocardium of DCM mice, and bioinformatics analysis confirmed that these circRNAs are related to oxidative stress, fibrosis and death of cardiomyocytes, and finally participate in the pathophysiological process of DCM.
Animals
;
Diabetes Mellitus, Experimental
;
Diabetic Cardiomyopathies/genetics*
;
Gene Expression Profiling/methods*
;
Mice
;
Mice, Inbred C57BL
;
MicroRNAs/genetics*
;
Myocardium
;
RNA, Circular
;
Stroke Volume
;
Ventricular Function, Left
6.Mining of Differentially Expressed Genes in Diabetic Cardiomyopathy Based on GEO Database.
Jia-Min CHEN ; Ying LI ; Hui-Hui WU ; Peng LIU ; Yan ZHENG ; Guo-Hai SU
Acta Academiae Medicinae Sinicae 2022;44(4):545-554
Objective To screen out the key genes leading to diabetic cardiomyopathy by analyzing the mRNA array associated with diabetic cardiomyopathy in the GEO database. Methods The online tool GEO2R of GEO was used to mine the differentially expressed genes (DEG) in the datasets GSE4745 and GSE5606.R was used to draw the volcano map of the DEG,and the Venn diagram was established online to identify the common DEG shared by the two datasets.The clusterProfile package in R was used for gene ontology annotation and Kyoto encyclopedia of genes and genomes pathway enrichment of the DEG.GSEA was used for gene set enrichment analysis,and STRING for the construction of a protein-protein interaction network.The maximal clique centrality algorithm in the plug-in Cytohubba of Cytoscape was used to determine the top 10 key genes. The expression of key genes was studied in the primary cardiomyocytes of rats and compared between the normal control group and high glucose group. Results The expression of Pdk4,Ucp3,Hmgcs2,Asl6,and Slc2a4 was consistent with the array analysis results.The expression of Pdk4,Ucp3,and Hmgcs2 was up-regulated while that of Acsl6 and Slc2a4 was down-regulated in the cardiomyocytes stimulated by high glucose (25 mmol/L) for 72 h. Conclusion Pdk4,Ucp3,Hmgcs2,Asl6,and Slc2a4 may be associated with the occurrence and development of diabetic cardiomyopathy,and may serve as the potential biomarkers of diabetic cardiomyopathy.
Animals
;
Computational Biology/methods*
;
Diabetes Mellitus
;
Diabetic Cardiomyopathies/genetics*
;
Gene Expression Profiling
;
Glucose
;
Protein Interaction Maps/genetics*
;
Rats
7.A case report of laminopathy-cardiomyopathy.
Chinese Journal of Cardiology 2022;50(10):1023-1026
9.Desmoplakin and clinical manifestations of desmoplakin cardiomyopathy.
Zhong-Yu YUAN ; Li-Ting CHENG ; Ze-Feng WANG ; Yong-Quan WU
Chinese Medical Journal 2021;134(15):1771-1779
Desmoplakin (DSP), encoded by the DSP gene, is the main desmosome component and is abundant in the myocardial tissue. There are three DSP isoforms that assume the role of supporting structural stability through intercellular adhesion. It has been found that DSP regulates the transcription of adipogenic and fibrogenic genes, and maintains appropriate electrical conductivity by regulating gap junctions and ion channels. DSP is essential for normal myocardial development and the maintenance of its structural functions. Studies have suggested that DSP gene mutations are associated with a variety of hereditary cardiomyopathy, such as arrhythmia cardiomyopathy, dilated cardiomyopathy (DCM), left ventricular noncompaction, and is also closely associated with the Carvajal syndrome, Naxos disease, and erythro-keratodermia-cardiomyopathy syndrome with skin and heart damage. The structure and function of DSP, as well as the clinical manifestations of DSP-related cardiomyopathy were reviewed in this article.
Arrhythmogenic Right Ventricular Dysplasia
;
Cardiomyopathies/genetics*
;
Desmoplakins/genetics*
;
Hair Diseases
;
Humans
;
Keratoderma, Palmoplantar
10.Study on network pharmacological mechanism of "treating different diseases with same method" of Notoginseng Radix et Rhizoma in treating diabetic nephropathy, diabetic encephalopathy and diabetic cardiomyopathy.
Chang-Pei XIANG ; Rui ZHOU ; Jing-Jing ZHANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2021;46(10):2424-2433
Pharmacology network was used to investigate the common key target and signaling pathway of Notoginseng Radix et Rhizoma in the protection against diabetic nephropathy(DN), diabetic encephalopathy(DE) and diabetic cardiomyopathy(DCM). The chemical components of Notoginseng Radix et Rhizoma were obtained through TCMSP database and literature mining, and SwissTargetPrediction database was used to predict potential targets of Notoginseng Radix et Rhizoma. The disease targets of DN, DE and DCM were obtained through OMIM and GeneCards databases. The overlapped targets of component targets and disease targets of DN, DE and DCM were obtained, and the network of "chemical component-target-disease" was established. The enriched GO and KEGG of the overlapped genes were investigated by using ClueGo plug-in with Cytoscape. At the same time, the PPI network was constructed through STRING database, and the common key targets for the treatment of three diseases by Notoginseng Radix et Rhizoma were obtained through topological parametric mathematical analysis by Cytoscape. A total of 166 chemical components and 835 component targets were screened out from Notoginseng Radix et Rhizoma. Briefly, 216, 194 and 230 disease targets of DN, DE and DCM were collected, respectively. And 54, 45 and 57 overlapped targets were identified when overlapping these disease targets with component targets of Notoginseng Radix et Rhizoma, respectively. Enrichment analysis indicated that the AGE-RAGE signaling pathway and FoxO signaling pathway were the common pathways in the protection of Notoginseng Radix et Rhizoma against DN, DE and DCM. Network analysis of the overlapped targets showed that TNF, STAT3, IL6, VEGFA, MAPK8, CASP3 and SIRT1 were identified as key targets of Notoginseng Radix et Rhizoma against DN, DE and DCM, the selected key targets were verified by literature review, and it was found that TNF, IL6, VEGFA, CASP3 and SIRT1 had been reported in the literature. In addition, there were the most compounds corresponding to the commom core target STAT3, indicating that more compounds in Notoginseng Radix et Rhizoma could regulate STAT3. This study indicated that Notoginseng Radix et Rhizoma potentially protected against DN, DE and DCM through regulating AGE-RAGE signaling pathway and FoxO signaling pathway and 7 common targets including TNF, STAT3, IL6, VEGFA, MAPK8, CASP3 and SIRT1. This study provided a reference for the research of "different diseases with same treatment" and also elucidated the potential mechanism of Notoginseng Radix et Rhizoma against DN, DE and DCM.
Brain Diseases
;
Diabetes Mellitus
;
Diabetic Cardiomyopathies/genetics*
;
Diabetic Nephropathies/genetics*
;
Humans
;
Research Design
;
Signal Transduction

Result Analysis
Print
Save
E-mail