2.Effect and mechanism of leonurine on pressure overload-induced cardiac hypertrophy in rats.
Xiao-Li DING ; Qing-Qing YUAN ; Ding-Jia XUE ; Fu-Ming YANG ; Yi-Zhun ZHU ; Hai-Bing QIAN
China Journal of Chinese Materia Medica 2022;47(2):461-468
To investigate the effects of leonurine(Leo) on abdominal aortic constriction(AAC)-induced cardiac hypertrophy in rats and its mechanism. A rat model of pressure overload-induced cardiac hypertrophy was established by AAC method. After 27-d intervention with high-dose(30 mg·kg~(-1)) and low-dose(15 mg·kg~(-1)) Leo or positive control drug losartan(5 mg·kg~(-1)), the cardiac function was evaluated by hemodynamic method, followed by the recording of left ventricular systolic pressure(LVSP), left ventricular end-diastolic pressure(LVESP), as well as the maximum rate of increase and decrease in left ventricular pressure(±dp/dt_(max)). The degree of left ventricular hypertrophy was assessed based on heart weight index(HWI) and left ventricular mass index(LVWI). Myocardial tissue changes and the myocardial cell diameter(MD) were measured after hematoxylin-eosin(HE) staining. The contents of angiotensin Ⅱ(AngⅡ) and angiotensin Ⅱ type 1 receptor(AT1 R) in myocardial tissue were detected by ELISA. The level of Ca~(2+) in myocardial tissue was determined by colorimetry. The protein expression levels of phospholipase C(PLC), inositol triphosphate(IP3), AngⅡ, and AT1 R were assayed by Western blot. Real-time quantitative PCR(qRT-PCR) was employed to determine the mRNA expression levels of β-myosin heavy chain(β-MHC), atrial natriuretic factor(ANF), AngⅡ, and AT1 R. Compared with the model group, Leo decreased the LVSP, LVEDP, HWI, LVWI and MD values, but increased ±dp/dt_(max) of the left ventricle. Meanwhile, it improved the pathological morphology of myocardial tissue, reduced cardiac hypertrophy, edema, and inflammatory cell infiltration, decreased the protein expression levels of PLC, IP3, AngⅡ, AT1 R, as well as the mRNA expression levels of β-MHC, ANF, AngⅡ, AT1 R, c-fos, and c-Myc in myocardial tissue. Leo inhibited AAC-induced cardiac hypertrophy possibly by influencing the RAS system.
Angiotensin II/metabolism*
;
Animals
;
Cardiomegaly/genetics*
;
Gallic Acid/analogs & derivatives*
;
Hypertrophy, Left Ventricular/pathology*
;
Myocardium/pathology*
;
Rats
3.Chikusetsu saponin Ⅳa ameliorates myocardial hypertrophy of rats through regulating expression of miR199a-5p/Atg5.
Xue-Cui WU ; Cheng-Fu YUAN ; Yu-Min HE ; Zhi-Yong ZHOU ; Yue LUO ; Meng-Ting YANG ; Xiao-Xiao LI ; Chao-Qi LIU
China Journal of Chinese Materia Medica 2021;46(19):5064-5071
The present study investigated the effects of chikusetsu saponin Ⅳa(CHS Ⅳa) on isoproterenol(ISO)-induced myocardial hypertrophy in rats and explored the underlying molecular mechanism. ISO was applied to establish a rat model of myocardial hypertrophy, and CHS Ⅳa(5 and 15 mg·kg~(-1)·d~(-1)) was used for intervention. The tail artery blood pressure was measured. Cardiac ultrasound examination was performed. The ratio of heart weight to body weight(HW/BW) was calculated. Morphological changes in the myocardial tissue were observed by HE staining. Collagen deposition in the myocardial tissue was observed by Masson staining. The mRNA expression of myocardial hypertrophy indicators(ANP and BNP), autophagy-related genes(Atg5, P62 and beclin1), and miR199 a-5 p was detected by qRT-PCR. Atg5 protein expression was detected by Western blot. The results showed that the model group exhibited increased tail artery blood pressure and HW/BW ratio, thickened left ventricular myocardium, enlarged myocardial cells, disordered myocardial fibers with widened interstitium, and a large amount of collagen aggregating around the extracellular matrix and blood vessels. ANP and BNP were largely expressed. Moreover, P62 expression was up-regulated, while beclin1 expression was down-regulated. After intervention by CHS Ⅳa at different doses, myocardial hypertrophy was ameliorated and autophagy activity in the myocardial tissue was enhanced. Meanwhile, miR199 a-5 p expression declined and Atg5 expression increased. As predicted by bioinformatics, Atg5 was a target gene of miR199 a-5 p. CHS Ⅳa was capable of preventing myocardial hypertrophy by regulating autophagy of myocardial cells through the miR-199 a-5 p/Atg5 signaling pathway.
Animals
;
Cardiomegaly/genetics*
;
Isoproterenol
;
Myocardium
;
Myocytes, Cardiac
;
Oleanolic Acid/analogs & derivatives*
;
Rats
;
Saponins/pharmacology*
4.Transforming growth factor-β-activated kinase 1 and pathological myocardial hypertrophy.
Ying LI ; Yue CHEN ; Dong-Mei ZHANG
Acta Physiologica Sinica 2020;72(4):499-505
The transforming growth factor-β-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family. TAK1 plays important roles in many biological functions. Cardiac hypertrophy can be identified as physiological or pathological myocardial hypertrophy. TAK1 not only participates in the development of normal myocardium, but also plays an important role in regulating the occurrence and development of pathological myocardial hypertrophy. Angiotensin II (Ang II) or pressure overload induces pathological cardiac hypertrophy through different ways, such as hypoxia-inducible factor-1α (HIF-1α)-mediated transcriptional expression of TAK1, or transforming growth factor-β1 (TGF-β1)-, thyroid hormone-, ubiquitin protease-mediated TAK1 phosphorylation or ubiquitination. This article reviews the role of TAK1 in the occurrence and development of pathological myocardial hypertrophy and discusses the potential of TAK1 as an important target for the prevention and treatment of clinical myocardial hypertrophy.
Cardiomegaly
;
Humans
;
MAP Kinase Kinase Kinases
;
genetics
;
Myocardium
;
Phosphorylation
;
Transforming Growth Factor beta
;
Transforming Growth Factor beta1
5.Overexpression of miR-130a-3p attenuates cardiomyocyte hypertrophy.
Xiaojiao WANG ; Jing QU ; Dongxu LI ; Junli LI ; Wenchao WU ; Xiaojing LIU
Journal of Biomedical Engineering 2020;37(2):340-348
This study aimed to explore the role of miR-130a-3p in cardiomyocyte hypertrophy and its underlying mechanisms. Pressure-overload induced myocardial hypertrophy mice model was constructed by thoracic aortic constriction (TAC). , norepinephrine (NE) was used to stimulate neonatal rat cardiomyocytes (NRCMs) and H9c2 rat cardiomyocytes to induce hypertrophic phenotypes. The expression of miR-130a-3p was detected in mice hypertrophic myocardium, hypertrophic NRCMs and H9c2 cells. The mimics and inhibitors of miR-130a-3p were transfected into H9c2 cells to observe the role of miR-130a-3p on the hypertrophic phenotype change of cardiomyocytes separately. Furthermore, whether miR-130a-3p regulated hypertrophic related signaling pathways was explored. The results showed that the expression of miR-130a-3p was significantly decreased in hypertrophic myocardium, hypertrophic NRCMs and H9c2 cells. After transfection of miR-130a-3p mimics, the expression of hypertrophic marker genes, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC), and the cell surface area were notably down-regulated compared with the control group (mimics N.C. + NE group). But after transfection of miR-130a-3p inhibitor, the expression of ANP, BNP and β-MHC in H9c2 cells increased significantly, and the cell area increased further. By Western blot, it was found that the protein phosphorylation level of Akt and mTOR were down-regulated after over-expression of miR-130a-3p. These results suggest that miR-130a-3p mimics may alleviate the degree of cardiomyocyte hypertrophy, meanwhile its inhibitor can further aggravate cardiomyocyte hypertrophy. Over-expression of miR-130a-3p may attenuate cardiomyocytes hypertrophy by affecting the Akt pathway.
Animals
;
Atrial Natriuretic Factor
;
Cardiomegaly
;
Mice
;
MicroRNAs
;
genetics
;
Myocardium
;
pathology
;
Myocytes, Cardiac
;
pathology
;
Myosin Heavy Chains
;
Natriuretic Peptide, Brain
;
Nonmuscle Myosin Type IIB
;
Proto-Oncogene Proteins c-akt
;
Rats
6.MicroRNA-23a knockdown attenuates angiotensin Ⅱ induced hypertrophy in rat H9c2 cells via activating PTEN and AMPK pathway.
Wei TENG ; Xian Jie ZHENG ; Gui Hong GONG ; Zhao Hui HE
Chinese Journal of Cardiology 2020;48(4):329-335
Objective: To investigate if microRNA (miR) -23a knockdown could attenuate angiotensin Ⅱ(AngⅡ) induced cardiac hypertrophy by activating phosphatase and tensin homolog deleted on chromosome ten(PTEN) and AMP-activated protein kinase(AMPK) pathway. Methods: Rat H9c2 cells were cultured in DMEM high glucose medium and put in 5% CO(2) incubator at 37 ℃(normal group). After 48 hours of culture, H9c2 cells were stimulated with 10 nmol/L AngⅡ to establish cell hypertrophy model (AngⅡgroup). The H9c2 cells were inoculated in a 6-well cell culture plate and cultured in an incubator at 37 ℃. When the confluence degree of cell growth was about 70%, the cells were transfected with different reagents, and 24 hours after transfection, 10 nmol/L AngⅡ was used to interfere with the cells. The H9c2 cells were divided into different groups according to the reagents, namely AngⅡ+anti-miR group(transfected with miR-23a inhibitor), Ang Ⅱ+NC group(transfected with miR-23a inhibitor negative control), Ang Ⅱ+anti-miR+si-PTEN group(cotransfected with miR-23a inhibitor and PTEN small interference RNA(siRNA)), and AngⅡ+anti-miR+si-NC group(cotransfected with miR-23a inhibitor and PTEN siRNA negative control). The surface area of single cell was measured by Image J software.The mRNA expression levels of α-actin 1 (ACTA1) and β-myosin heavy chain (β-MHC) and miR-23a were detected by quantitative real-time PCR(qRT-PCR). The expression levels of PTEN and AMPK signal pathway related proteins were detected by Western blot. In order to verify whether miR-23a targets PTEN gene, double luciferase reporter gene experiment was performed. The luciferase reporter gene vector recombinant plasmids of wild type pGL-WT-PTEN and mutant pGL-MUT-PTEN were constructed and prepared after normal sequencing. H9c2 cells was inoculated into 24-well cell culture plate and cultured overnight in 37 ℃ incubator. The cells were co-transfected with miR-23a mimic or miR-23a mimic negative control and wild type or mutant reporter gene recombinant plasmid. Forty-eight hours after transfection, firefly luciferase activity and sea kidney luciferase activity were measured, and the ratio of them was recorded as relative luciferase activity. Results: Compared with the normal group, the cell surface area, the mRNA expression levels of ACTA1, β-MHC and miR-23a were significantly higher, while the protein expression levels of PTEN and p-AMPK were significantly lower in the Ang Ⅱ group(all P<0.05). The results of double luciferase reporter gene assay showed that the relative luciferase activity of cells co-transfected with miR-23a mimic and wild-type reporter gene recombinant plasmid was lower than that of miR-23a mimic negative control (P<0.05), and PTEN served as the target gene of miR-23a. In AngⅡ+anti-miR group the mRNA expression levels of miR-23a, ACTA1 and β-MHC were lower, and the cell surface area was smaller, while the protein expression levels of PTEN and p-AMPK were higher than that in AngⅡ group and AngⅡ+NC group(all P<0.05). Compared with AngⅡ+anti-miR group, the cell surface area was bigger, the expression of ACTA1 and β-MHC mRNA was up-regulated, and the protein expression levels of PTEN and p-AMPK were down-regulated in Ang Ⅱ+anti-miR+si-PTEN group(all P<0.05). Conclusion: Inhibition of miR-23a can attenuate Ang Ⅱ-induced hypertrophy in H9c2 cells through targeting PTEN and activating AMPK signaling pathway.
AMP-Activated Protein Kinases
;
Angiotensin II
;
Animals
;
Cardiomegaly
;
Cell Line
;
Cell Proliferation
;
MicroRNAs/genetics*
;
PTEN Phosphohydrolase
;
Rats
;
Signal Transduction
7.Research progress on miR-21 in heart diseases.
Journal of Zhejiang University. Medical sciences 2019;48(2):214-218
Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.
Cardiomegaly
;
genetics
;
physiopathology
;
Heart Diseases
;
genetics
;
physiopathology
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Myocardium
;
pathology
8.Cardiac Hypertrophy is Positively Regulated by MicroRNA‑24 in Rats
Juan GAO ; Min ZHU ; Rui-Feng LIU ; Jian-Shu ZHANG ; Ming XU
Chinese Medical Journal 2018;131(11):1333-1341
BackgroundMicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy.
MethodsTwelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance.
ResultsThe expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = -2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy.
ConclusionMiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression.
Animals ; Cardiomegaly ; genetics ; pathology ; Cell Cycle ; genetics ; physiology ; Cyclin-Dependent Kinase Inhibitor p27 ; genetics ; metabolism ; Male ; MicroRNAs ; genetics ; Myocardium ; metabolism ; Myocytes, Cardiac ; cytology ; metabolism ; Rats ; Rats, Sprague-Dawley
9.Effect of Atorvastatin on Expression of Peroxisome Proliferator-activated Receptor Beta/delta in Angiotensin II-induced Hypertrophic Myocardial Cells In Vitro.
Li SHENG ; Xu YANG ; Ping YE ; Yong-xue LIU ; Chun-guang HAN
Chinese Medical Sciences Journal 2015;30(4):245-251
OBJECTIVETo explore the effect of atorvastatin on cardiac hypertrophy and to determine the potential mechanism involved.
METHODSAn in vitro cardiomyocyte hypertrophy from neonatal rats was induced with angiotensin II (Ang II) stimulation. Before Ang II stimulation, the cultured rat cardiac myocytes were pretreated with atorvastatin at different concentrations (0.1, 1, and 10 μmol/L). The following parameters were evaluated: the myocyte surface area, 3H-leucine incorporation into myocytes, mRNA expressions of atrial natriuretic peptide, brain natriuretic peptide, matrix metalloproteinase 9, matrix metalloproteinase 2, and interleukin-1β, mRNA and protein expressions of the δ/β peroxisome proliferator-activated receptor (PPAR) subtypes.
RESULTSIt was shown that atorvastatin could ameliorate Ang II-induced neonatal cardiomyocyte hypertrophy in the area of cardiomyocytes, 3H-leucine incorporation, and the expression of atrial natriuretic peptide and brain natriuretic peptide markedly. Meanwhile, atorvastatin also inhibited the augmented mRNA level of several cytokines in hypertrophic myocytes. Furthermore, the down-regulated expression of PPAR- δ/β at both the mRNA and protein levels in hypertrophic myocytes could be significantly reversed by atorvastatin treatment.
CONCLUSIONSAtorvastatin could improve Ang II-induced cardiac hypertrophy and inhibit the expression of cytokines. Such effect might be partly achieved through activation of the PPAR-δ/β pathway.
Angiotensin II ; pharmacology ; Animals ; Atorvastatin Calcium ; pharmacology ; therapeutic use ; Cardiomegaly ; metabolism ; pathology ; prevention & control ; Cells, Cultured ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; PPAR delta ; genetics ; PPAR-beta ; genetics ; Rats ; Rats, Wistar

Result Analysis
Print
Save
E-mail