1.High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast.
Dawei XIE ; Zheng WANG ; Beibei SUN ; Liwei QU ; Musheng ZENG ; Lin FENG ; Mingzhou GUO ; Guizhen WANG ; Jihui HAO ; Guangbiao ZHOU
Frontiers of Medicine 2023;17(5):907-923
The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
Female
;
Humans
;
Alternative Splicing
;
Breast Neoplasms/metabolism*
;
Carcinoma, Pancreatic Ductal/pathology*
;
Focal Adhesion Protein-Tyrosine Kinases/therapeutic use*
;
Nerve Tissue Proteins/genetics*
;
Neuroendocrine Tumors/genetics*
;
Oncogenes
;
Pancreatic Neoplasms/metabolism*
2.USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway.
Yinghui LIU ; Jingjing MA ; Shimin LU ; Pengzhan HE ; Weiguo DONG
Chinese Medical Journal 2023;136(18):2229-2242
BACKGROUND:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC.
METHODS:
We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25.
RESULTS:
USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo .
CONCLUSIONS
In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Animals
;
Mice
;
beta Catenin/genetics*
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms/pathology*
;
Ubiquitin Thiolesterase/metabolism*
;
Wnt Signaling Pathway/genetics*
3.Formononetin enhances the antitumor effect of H22 hepatoma transplanted mice.
Mi LI ; Chengzhi JIANG ; Jianting CHEN ; Junyan WANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1063-1068
Objective To explore the effect of formononetin on immunity of mice with transplanted H22 hepatocarcinoma. Methods Male C57BL/6 mice were subcutaneously inoculated with H22 cells (4×105) to establish a tumor-bearing mouse model. The mice were treated with formononetin [10 mg/(kg.d)] or [50 mg/(kg.d)] for 28 days, and then the tumor inhibition rate was calculated. Carrilizumab was used as a positive control drug. The expressions of CD8, granzyme B and forkbox transcription factor 3 (FOXP3) in HCC tissues were analyzed by immunohistochemical staining. The mRNA and protein expression of programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) in HCC tissues were detected by real-time PCR or Western blot analysis, respectively. The serum levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) were detected by ELISA. Results Formononetin increased the tumor inhibition rate and the positive rate of CD8 and granzyme B staining in tumor-bearing mice. There was no significant difference in the positive rate of FOXP3 staining in tumor tissues of mice in each group. Formononetin decreased the levels of IL-10 and TGF-β in serum of tumor-bearing mice, and decreased the relative expression of mRNA and protein of PD-1 and PD-L1 in tumor tissue of tumor-bearing mice. Conclusion Formononetin can activate CD8+ T cells and reduce the release of immunosuppressive factors in regulatory T cells by blocking PD-1/PD-L1 pathway and play an antitumor role.
Male
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/genetics*
;
Interleukin-10/genetics*
;
B7-H1 Antigen
;
Granzymes/genetics*
;
Programmed Cell Death 1 Receptor/metabolism*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Mice, Inbred C57BL
;
Transforming Growth Factor beta/genetics*
;
RNA, Messenger/metabolism*
;
Forkhead Transcription Factors/genetics*
;
Cell Line, Tumor
4.Mechanism Research of lncRNA miR143HG on Regulating the Biological Behavior of Lung Squamous Cell Carcinoma H520 Cells.
Longfei GOU ; Yayuan HE ; Pengcheng QIU ; Bo HUANG
Chinese Journal of Lung Cancer 2023;26(10):741-752
BACKGROUND:
There is a high morbidity, mortality, and poor clinical prognosis of lung squamous cell carcinoma (LUSC). However, there is currently no effective targeted treatment plan for LUSC. As a long non-coding RNA (lncRNA), lncRNA miR143HG has been proven to play an important role in the occurrence and development of various tumors. However, the biological role played by lncRNA miR143HG in LUSC cells is still unclear. Therefore, this study aimed to investigate the mechanism of lncRNA miR143HG on regulating the biological behavior of LUSC H520 cells.
METHODS:
Pan-cancer analysis and differential expression analysis of lncRNA miR143HG were performed based on The Cancer Genome Atlas (TCGA) database. The predictive effect of lncRNA miR143HG on the diagnosis and prognosis of LUSC was evaluated by adopting the receiver operating characteristic (ROC) curve and timeROC curve. The enrichment degree of each pathway to lncRNA miR143HG was determined. The expression of lncRNA miR143HG and miR-155 in BEAS-2B cells and H520 cells was detected using quantitative real-time polymerase chain reaction (qRT-PCR). H520 cells were randomly divided into blank control group (without any treatment), negative control group (transfected with lncRNA-NC), lncRNA miR143HG group (transfected with lncRNA miR143HG), and lncRNA miR143HG+miR-155 group (co-transfected with lncRNA miR143HG and miR-155). The approaches of CCK-8, wound healing test, Transwell assay, flow cytometry, qRT-PCR, and Western blot were respectively employed to detect the cell proliferation ability, cell migration ability, cell invasion ability, cell apoptosis rate, and expression level of related genes and proteins of the Wnt/β-Catenin pathway.
RESULTS:
The results of pan-cancer analysis and differential analysis collectively showed that except for renal clear cell carcinoma, the expression of lncRNA miR143HG in other cancer tissues was higher than that in healthy tissues, and the differences were significant in LUSC. The evaluation results of the ROC curve and timeROC curve suggested that lncRNA miR143HG was of great significance in the prediction of diagnosis and prognosis of LUSC. The pathways enriched in high expression of lncRNA miR143HG mainly included focal adhesion, vascular smooth muscle contraction, calcium signaling pathways, and so on; the pathways enriched in the low expression of lncRNA miR143HG embraced oxidative phosphorylation, cell cycle, basic transcription factors, etc. The qRT-PCR results showed that lncRNA miR143HG was low expressed but miR-155 was highly expressed in H520 cells when compared to BEAS-2B cells (P<0.05). Compared with the negative control group, the expression levels of the gene of lncRNA miR143HG, the gene and protein of Wnt, as well as the gene and protein of β-Catenin were significantly increased, while the gene expression of miR-155, the ability of cell proliferation, cell migration, and cell invasion were significantly reduced, but the cell apoptosis rate was dominantly elevated in cells of lncRNA miR143HG group (P<0.05). In addition, compared with the lncRNA miR143HG group, overexpression of miR-155 could reverse the biological behavior mediated by lncRNA miR143HG, and the difference was statistically significant (P<0.05).
CONCLUSIONS
LncRNA miR143HG was of great significance for the biological behavior of H520 cells. LncRNA miR143HG inhibited the ability of proliferation, migration, and invasion, as well as enhanced the apoptosis of H520 cells by downregulating miR-155 expression, which may be related to the Wnt/β-Catenin pathway.
.
Humans
;
RNA, Long Noncoding/genetics*
;
beta Catenin/metabolism*
;
Lung Neoplasms/genetics*
;
Carcinoma, Squamous Cell/genetics*
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
MicroRNAs/genetics*
;
Lung/pathology*
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Gene Expression Regulation, Neoplastic
5.Clinicopathological features of patients with RET fusion-positive non-small cell lung cancer.
Qi TAN ; Yu JI ; Xiao Li WANG ; Zhen Wei WANG ; Xiao Wei QI ; Yan Kui LIU
Chinese Journal of Pathology 2023;52(2):124-128
Objective: To investigate the clinicopathological features, treatment and prognosis of patients with RET fusion positive non-small cell lung cancer (NSCLC). Methods: A total of 1 089 NSCLCs were retrieved at Affiliated Hospital of Jiangnan University from August 2018 to April 2020. In all cases, multiple gene fusion detection kits (fluorescent PCR method) were used to detect the gene status of RET, EGFR, ALK, ROS1, KRAS, BRAF and HER2; and immunohistochemical method was used to detect the expression of PD-L1 and mismatch repair related proteins. The correlation between RET-fusion and patients' age, gender, smoking history, tumor stage, grade, pathologic type, and PD-L1, mismatch repair related protein expression was analyzed. Results: There were 22 cases (2.02%) detected with RET fusion-positive in 1 089 NSCLC patients, in which 11 males and 11 females; and the median age was 63.5 years. There were 20 adenocarcinomas, including 11 acinar predominant adenocarcinoma (APA), five solid predominant adenocarcinoma (SPA) and four lepidic predominant adenocarcinoma (LPA); There were one case each of squamous cell carcinoma (non-keratinizing type) and sarcomatoid carcinoma (pleomorphic carcinoma). There were 6 and 16 patients with RET fusion-positive who were in stage Ⅰ-Ⅱ and Ⅲ-Ⅳ respectively, and 16 cases with lymph node metastasis, 11 cases with distant metastasis. Among RET fusion-positive cases, one was detected with HER2 co-mutation. The tumor proportion score of PD-L1≥1% in patients with RET fusion positive lung cancer was 54.5% (12/22). Defects in mismatch repair protein expression were not found in patients with RET fusion positive NSCLC. Four patients with RET fusions positive (two cases of APA and two cases of SPA) received pratinib-targeted therapy, and two showed benefits from this targeted therapy. Conclusions: The histological subtypes of RET fusions positive NSCLC are more likely to be APA or SPA. RET fusion-positive NSCLC patients are associated with advanced clinical stage, lymph node metastases, and they may benefit from targeted therapy with RET-specific inhibitors.
Male
;
Female
;
Humans
;
Middle Aged
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
B7-H1 Antigen/genetics*
;
Protein-Tyrosine Kinases/genetics*
;
Proto-Oncogene Proteins c-ret/metabolism*
;
Proto-Oncogene Proteins/genetics*
;
Adenocarcinoma/pathology*
;
Carcinoma, Squamous Cell/genetics*
;
Mutation
6.PDCD6 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis through the AKT/GSK3β/β-catenin Pathway.
Shi Yuan WEN ; Yan Tong LIU ; Bing Yan WEI ; Jie Qiong MA ; Yan Yan CHEN
Biomedical and Environmental Sciences 2023;36(3):241-252
OBJECTIVE:
Programmed cell death 6 (PDCD6), a Ca 2+-binding protein, has been reported to be aberrantly expressed in all kinds of tumors. The aim of this study was to explore the role and mechanism of PDCD6 in hepatocellular carcinomas (HCCs).
METHODS:
The expression levels of PDCD6 in liver cancer patients and HCC cell lines were analyzed using bioinformatics and Western blotting. Cell viability and metastasis were determined by methylthiazol tetrazolium (MTT) and transwell assays, respectively. And Western blotting was used to test related biomarkers and molecular pathway factors in HCC cell lines. LY294002, a PI3K inhibitor inhibiting AKT, was used to suppress the AKT/GSK3β/β-catenin pathway to help evaluate the role of this pathway in the HCC carcinogenesis associated with PDCD6.
RESULTS:
The analysis of The Cancer Genome Atlas Database suggested that high PDCD6 expression levels were relevant to liver cancer progression. This was consistent with our finding of higher levels of PDCD6 expression in HCC cell lines than in normal hepatocyte cell lines. The results of MTT, transwell migration, and Western blotting assays revealed that overexpression of PDCD6 positively regulated HCC cell proliferation, migration, and invasion. Conversely, the upregulation of PDCD6 expression in the presence of an AKT inhibitor inhibited HCC cell proliferation, migration, and invasion. In addition, PDCD6 promoted HCC cell migration and invasion by epithelial-mesenchymal transition. The mechanistic investigation proved that PDCD6 acted as a tumor promoter in HCC through the AKT/GSK3β/β-catenin pathway, increasing the expression of transcription factors and cellular proliferation and metastasis.
CONCLUSION
PDCD6 has a tumor stimulative role in HCC mediated by AKT/GSK3β/β-catenin signaling and might be a potential target for HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
beta Catenin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Cell Line
;
Cell Proliferation
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Calcium-Binding Proteins/metabolism*
;
Apoptosis Regulatory Proteins/genetics*
7.PHF5A Promotes Proliferation and Migration of Non-Small Cell Lung Cancer by Regulating of PI3K/AKT Pathway.
Houhui WANG ; Fanglei LIU ; Chunxue BAI ; Nuo XU
Chinese Journal of Lung Cancer 2023;26(1):10-16
BACKGROUND:
There have been many significant advances in the diagnosis and treatment of non-small cell lung cancer (NSCLC). However, the mechanism underlying the progression of NSCLC is still not clear. Plant homodomain finger-like domain-containing protein 5A (PHF5A) plays an important role in processes of chromatin remodeling, morphological development of tissues and organs and maintenance of stem cell pluripotency. This study aims to investigate the role of PHF5A in the proliferation and migration of NSCLC.
METHODS:
A549 and PC-9 PHF5A overexpression cell lines were constructed. PHF5A expression was decreased in H292 and H1299 cells by using siRNA. Flow cytometry was used to detect the cell cycle. MTT assay and clone formation assay were used to examine the proliferative ability of NSCLC, while migration assay and wound healing assay were performed to evaluate the ability of migration. Western blot analysis was used to measure the expressions of PI3K, p-AKT and the associated downstream factors.
RESULTS:
Up-regulation of PHF5A in A549 and PC-9 cells increased the proliferation rate, while down-regulation of PHF5A in H292 and H1299 cells inhibited the proliferation rate at 24 h, 48 h and 72 h (P<0.05). The metastatic ability was elevated in the PHF5A-overexpresion groups, while reduced in the PHF5A-down-regulation group (P<0.05). In addition, reduced expression of PHF5A induced cell cycle arrest at G1/S phase (P<0.05). Furthermore, decreased expression of PHF5A reduced the expression levels of PI3K, phosphorylation of AKT, c-Myc (P<0.05) and elevated the expression of p21 (P<0.05).
CONCLUSIONS
These results demonstrated that PHF5A may play an important role in progression of NSCLC by regulating the PI3K/AKT signaling pathway.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Gene Expression Regulation, Neoplastic
;
Trans-Activators/genetics*
;
RNA-Binding Proteins/metabolism*
8.Lung Squamous Cell Carcinoma with EML4-ALK Fusion and TP53 Co-mutation Treated with Ensartinib: A Case Report and Literature Review.
Donglai LV ; Chunwei XU ; Chong WANG ; Qiuju SANG
Chinese Journal of Lung Cancer 2023;26(1):78-82
Lung squamous cell carcinoma (LSCC) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases and is the second most common histological type of lung cancer. Anaplastic lymphoma kinase (ALK)-positive NSCLC accounts for only 2%-5% of all NSCLC cases, and is almost exclusively detected in patients with lung adenocarcinoma. Thus, ALK testing is not routinely performed in the LSCC population, and the efficacy of such treatment for ALK-rearranged LSCC remains unknown. Echinoderm microtubule associated protein like 4 (EML4)-ALK (V1) and TP53 co-mutations were identified by next generation sequencing (NGS) in this patient with advanced LSCC. On December 3, 2020, Ensatinib was taken orally and the efficacy was evaluated as partial response (PR). The progression-free survival (PFS) was 19 months. When the disease progressed, the medication was changed to Loratinib. To our knowledge, Enshatinib created the longest PFS of ALK-mutant LSCC patients treated with targeted therapy since literature review. Herein, we described one case treated by Enshatinib involving a patient with both EML4-ALK and TP53 positive LSCC, and the relevant literatures were reviewed for discussing the treatment of this rare disease.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Lung Neoplasms/pathology*
;
Anaplastic Lymphoma Kinase/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Mutation
;
Cytoskeletal Proteins/genetics*
;
Lung/pathology*
;
Oncogene Proteins, Fusion/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Tumor Suppressor Protein p53/genetics*
9.Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways.
Qiong ZHAO ; Luwen ZHANG ; Qiufen HE ; Hui CHANG ; Zhiqiang WANG ; Hongcui CAO ; Ying ZHOU ; Ruolang PAN ; Ye CHEN
Journal of Zhejiang University. Science. B 2023;24(1):50-63
Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Cell Hypoxia
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Liver Neoplasms/pathology*
;
Signal Transduction/genetics*
;
tRNA Methyltransferases/metabolism*
10.The mechanism of S100A7 inducing the migration and invasion in cervical cancer cells.
Tian TIAN ; Zhen HUA ; Yan KONG ; Ling Zhi WANG ; Xiang Yu LIU ; Yi HAN ; Xue Min ZHOU ; Zhu Mei CUI
Chinese Journal of Oncology 2023;45(5):375-381
Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.
Female
;
Humans
;
Uterine Cervical Neoplasms/pathology*
;
HeLa Cells
;
Fibronectins/metabolism*
;
Culture Media, Conditioned
;
Carcinoma, Squamous Cell/metabolism*
;
Adenocarcinoma
;
Cadherins/metabolism*
;
RNA, Messenger/metabolism*
;
Cell Movement
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
S100 Calcium Binding Protein A7/metabolism*

Result Analysis
Print
Save
E-mail