1.USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway.
Yinghui LIU ; Jingjing MA ; Shimin LU ; Pengzhan HE ; Weiguo DONG
Chinese Medical Journal 2023;136(18):2229-2242
BACKGROUND:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC.
METHODS:
We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25.
RESULTS:
USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo .
CONCLUSIONS
In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Animals
;
Mice
;
beta Catenin/genetics*
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms/pathology*
;
Ubiquitin Thiolesterase/metabolism*
;
Wnt Signaling Pathway/genetics*
2.Construction of a stable centromere protein F overexpression cell model of hepatocellular carcinoma using CRISPR activation system.
Saiping QI ; Xiaojin LI ; Donghu ZHOU ; Jian HUANG
Chinese Journal of Biotechnology 2023;39(9):3738-3746
Current studies have shown that centromere protein F (CENPF) was overexpressed in hepatocellular carcinoma (HCC) and might be involved in the pathogenesis of HCC. Specifically, due to the very large molecular weight (358 kDa) of CENPF full length protein, only CENPF knock-down, but not overexpression models, were applied currently to explore the carcinogenicity of CENPF in HCC. Whether CENPF overexpression is a cause or an effect in HCC remains to be illustrated. We aimed to establish a CENPF overexpression cell model using CRISPR/dCas9 synergistic activation mediator (SAM) system with lentiMPHv2 and lentiSAMv2 vectors to explore the role of CENPF overexpression in HCC. Single guide RNAs (sgRNAs) that specifically identify the transcription initiation site of CENPF gene were synthesized and inserted into the lentiSAMv2 plasmid. Huh-7 and HCCLM3 cells were first transduced with lentiMPHv2 and then selected with hygromycin B. The cells were then transduced with lentiSAMv2 carrying specific sgRNA for CENPF gene, followed by blasticidin S selection. The mRNA and protein detection results of Huh-7 and HCCLM3 cells screened by hygromycin B and blasticidin S showed that the endogenous overexpression of CENPF can be induced by sgRNA1 and sgRNA4, especially by sgRNA4. By using the CRISPR/dCas9 technique, stable cell models with overexpressed CENPF were successfully constructed to explore the role of CENPF in tumorigenesis, which provides a reference for the construction of cell models overexpressing large molecular weight protein.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/genetics*
;
RNA, Guide, CRISPR-Cas Systems
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Hygromycin B
3.Inhibitory effect and molecular mechanism of sinomenine on human hepatocellular carcinoma HepG2 and SK-HEP-1 cells.
Ying-Ying TIAN ; Bei-Bei MA ; Xin-Yue ZHAO ; Chuang LIU ; Yi-Lin LI ; Shang-Yue YU ; Shi-Qiu TIAN ; Hai-Luan PEI ; Ying-Nan LYU ; Ze-Ping ZUO ; Zhi-Bin WANG
China Journal of Chinese Materia Medica 2023;48(17):4702-4710
This study aimed to investigate the effect and molecular mechanism of sinomenine on proliferation, apoptosis, metastasis, and combination with inhibitors in human hepatocellular carcinoma HepG2 cells and SK-HEP-1 cells. The effect of sinomenine on the growth ability of HepG2 and SK-HEP-1 cells were investigated by CCK-8 assay, colony formation assay, and BeyoClick~(TM) EdU-488 staining. The effect of sinomenine on DNA damage was detected by immunofluorescence assay, and the effect of sinomenine on apoptosis of human hepatocellular carcinoma cells was clarified by Hoechst 33258 staining and CellEvent~(TM) Cystein-3/7Green ReadyProbes~(TM) reagent assay. Cell invasion assay and 3D tumor cell spheroid invasion assay were performed to investigate the effect of sinomenine on the invasion ability of human hepatocellular carcinoma cells in vitro. The effect of sinomenine on the regulation of protein expression related to the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription 3(STAT3) signaling pathway in HepG2 and SK-HEP-1 cells was examined by Western blot. Molecular docking was used to evaluate the strength of affinity of sinomenine to the target cysteinyl aspartate specific proteinase-3(caspase-3) and STAT3, and combined with CCK-8 assay to detect the changes in cell viability after combination with STAT3 inhibitor JSI-124 in combination with CCK-8 assay. The results showed that sinomenine could significantly reduce the cell viability of human hepatocellular carcinoma cells in a concentration-and time-dependent manner, significantly inhibit the clonogenic ability of human hepatocellular carcinoma cells, and weaken the invasive ability of human hepatocellular carcinoma cells in vitro. In addition, sinomenine could up-regulate the cleaved level of poly ADP-ribose polymerase(PARP), a marker of apoptosis, and down-regulate the protein levels of p-Akt, p-mTOR, and p-STAT3 in human hepatocellular carcinoma cells. Molecular docking results showed that sinomenine had good affinity with the targets caspase-3 and STAT3, and the sensitivity of sinomenine to hepatocellular carcinoma cells was diminished after STAT3 was inhibited. Therefore, sinomenine can inhibit the proliferation and invasion of human hepatocellular carcinoma cells and induce apoptosis, and the mechanism may be attributed to the activation of caspase-3 signaling and inhibition of the Akt/mTOR/STAT3 pathway. This study can provide a new reference for the in-depth research and clinical application of sinomenine and is of great significance to further promote the scientific development and utilization of sinomenine.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Caspase 3/metabolism*
;
Liver Neoplasms/genetics*
;
Molecular Docking Simulation
;
Sincalide/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Hep G2 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
4.Formononetin enhances the antitumor effect of H22 hepatoma transplanted mice.
Mi LI ; Chengzhi JIANG ; Jianting CHEN ; Junyan WANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1063-1068
Objective To explore the effect of formononetin on immunity of mice with transplanted H22 hepatocarcinoma. Methods Male C57BL/6 mice were subcutaneously inoculated with H22 cells (4×105) to establish a tumor-bearing mouse model. The mice were treated with formononetin [10 mg/(kg.d)] or [50 mg/(kg.d)] for 28 days, and then the tumor inhibition rate was calculated. Carrilizumab was used as a positive control drug. The expressions of CD8, granzyme B and forkbox transcription factor 3 (FOXP3) in HCC tissues were analyzed by immunohistochemical staining. The mRNA and protein expression of programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) in HCC tissues were detected by real-time PCR or Western blot analysis, respectively. The serum levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) were detected by ELISA. Results Formononetin increased the tumor inhibition rate and the positive rate of CD8 and granzyme B staining in tumor-bearing mice. There was no significant difference in the positive rate of FOXP3 staining in tumor tissues of mice in each group. Formononetin decreased the levels of IL-10 and TGF-β in serum of tumor-bearing mice, and decreased the relative expression of mRNA and protein of PD-1 and PD-L1 in tumor tissue of tumor-bearing mice. Conclusion Formononetin can activate CD8+ T cells and reduce the release of immunosuppressive factors in regulatory T cells by blocking PD-1/PD-L1 pathway and play an antitumor role.
Male
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/genetics*
;
Interleukin-10/genetics*
;
B7-H1 Antigen
;
Granzymes/genetics*
;
Programmed Cell Death 1 Receptor/metabolism*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Mice, Inbred C57BL
;
Transforming Growth Factor beta/genetics*
;
RNA, Messenger/metabolism*
;
Forkhead Transcription Factors/genetics*
;
Cell Line, Tumor
5.Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in hepatocellular carcinoma via Wnt/β-catenin pathway under hypoxia.
Bing-Jie GUO ; Yi RUAN ; Ya-Jing WANG ; Chu-Lan XIAO ; Zhi-Peng ZHONG ; Bin-Bin CHENG ; Juan DU ; Bai LI ; Wei GU ; Zi-Fei YIN
Journal of Integrative Medicine 2023;21(5):474-486
OBJECTIVE:
Jiedu Recipe (JR), a Chinese herbal remedy, has been shown to prolong overall survival time and decrease recurrence and metastasis rates in patients with hepatocellular carcinoma (HCC). This work investigated the mechanism of JR in HCC treatment.
METHODS:
The chemical constituents of JR were detected using liquid chromatography-mass spectrometry. The potential anti-HCC mechanism of JR was screened using network pharmacology and messenger ribonucleic acid (mRNA) microarray chip assay, followed by experimental validation in human HCC cells (SMMC-7721 and Huh7) in vitro and a nude mouse subcutaneous transplantation model of HCC in vivo. HCC cell characteristics of proliferation, migration and invasion under hypoxic setting were investigated using thiazolyl blue tetrazolium bromide, wound healing and Transwell assays, respectively. Image-iT™ Hypoxia Reagent was added to reveal hypoxic conditions. Stem cell sphere formation assay was used to detect the stemness. Epithelial-mesenchymal transition (EMT) markers like E-cadherin, vimentin and α-smooth muscle actin, and pluripotent transcription factors including nanog homeobox, octamer-binding transcription factor 4, and sex-determining region Y box protein 2 were analyzed using Western blotting and real-time polymerase chain reaction. Western blot was performed to ascertain the anti-HCC effect of JR under hypoxia involving the Wnt/β-catenin pathway.
RESULTS:
According to network pharmacology and mRNA microarray chip analysis, JR may potentially act on hypoxia and inhibit the Wnt/β-catenin pathway. In vitro and in vivo experiments showed that JR significantly decreased hypoxia, and suppressed HCC cell features of proliferation, migration and invasion; furthermore, the hypoxia-induced increases in EMT and stemness marker expression in HCC cells were inhibited by JR. Results based on the co-administration of JR and an agonist (LiCl) or inhibitor (IWR-1-endo) verified that JR suppressed HCC cancer stem-like properties under hypoxia by blocking the Wnt/β-catenin pathway.
CONCLUSION
JR exerts potent anti-HCC effects by inhibiting cancer stemness via abating the Wnt/β-catenin pathway under hypoxic conditions. Please cite this article as: Guo BJ, Ruan Y, Wang YJ, Xiao CL, Zhong ZP, Cheng BB, Du J, Li B, Gu W, Yin ZF. Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in hepatocellular carcinoma via Wnt/β-catenin pathway under hypoxia. J Integr Med. 2023; 21(5): 474-486.
Animals
;
Mice
;
Humans
;
Carcinoma, Hepatocellular/genetics*
;
beta Catenin/pharmacology*
;
Liver Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
RNA, Messenger/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Movement
;
Gene Expression Regulation, Neoplastic
6.Integrins in human hepatocellular carcinoma tumorigenesis and therapy.
Qiong GAO ; Zhaolin SUN ; Deyu FANG
Chinese Medical Journal 2023;136(3):253-268
Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Humans
;
Integrins/metabolism*
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/genetics*
;
Cell Adhesion
;
Carcinogenesis
;
Cell Transformation, Neoplastic
;
Tumor Microenvironment
7.PDCD6 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis through the AKT/GSK3β/β-catenin Pathway.
Shi Yuan WEN ; Yan Tong LIU ; Bing Yan WEI ; Jie Qiong MA ; Yan Yan CHEN
Biomedical and Environmental Sciences 2023;36(3):241-252
OBJECTIVE:
Programmed cell death 6 (PDCD6), a Ca 2+-binding protein, has been reported to be aberrantly expressed in all kinds of tumors. The aim of this study was to explore the role and mechanism of PDCD6 in hepatocellular carcinomas (HCCs).
METHODS:
The expression levels of PDCD6 in liver cancer patients and HCC cell lines were analyzed using bioinformatics and Western blotting. Cell viability and metastasis were determined by methylthiazol tetrazolium (MTT) and transwell assays, respectively. And Western blotting was used to test related biomarkers and molecular pathway factors in HCC cell lines. LY294002, a PI3K inhibitor inhibiting AKT, was used to suppress the AKT/GSK3β/β-catenin pathway to help evaluate the role of this pathway in the HCC carcinogenesis associated with PDCD6.
RESULTS:
The analysis of The Cancer Genome Atlas Database suggested that high PDCD6 expression levels were relevant to liver cancer progression. This was consistent with our finding of higher levels of PDCD6 expression in HCC cell lines than in normal hepatocyte cell lines. The results of MTT, transwell migration, and Western blotting assays revealed that overexpression of PDCD6 positively regulated HCC cell proliferation, migration, and invasion. Conversely, the upregulation of PDCD6 expression in the presence of an AKT inhibitor inhibited HCC cell proliferation, migration, and invasion. In addition, PDCD6 promoted HCC cell migration and invasion by epithelial-mesenchymal transition. The mechanistic investigation proved that PDCD6 acted as a tumor promoter in HCC through the AKT/GSK3β/β-catenin pathway, increasing the expression of transcription factors and cellular proliferation and metastasis.
CONCLUSION
PDCD6 has a tumor stimulative role in HCC mediated by AKT/GSK3β/β-catenin signaling and might be a potential target for HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
beta Catenin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Cell Line
;
Cell Proliferation
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Calcium-Binding Proteins/metabolism*
;
Apoptosis Regulatory Proteins/genetics*
8.Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways.
Qiong ZHAO ; Luwen ZHANG ; Qiufen HE ; Hui CHANG ; Zhiqiang WANG ; Hongcui CAO ; Ying ZHOU ; Ruolang PAN ; Ye CHEN
Journal of Zhejiang University. Science. B 2023;24(1):50-63
Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Cell Hypoxia
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Liver Neoplasms/pathology*
;
Signal Transduction/genetics*
;
tRNA Methyltransferases/metabolism*
9.Overexpression of CLEC5A inhibits cell proliferation and metastasis and reverses epithelial-mesenchymal transition in hepatocellular carcinoma.
Jie LIN ; Huo Hui OU ; Wei Dong WANG ; Jing MA ; Wei Jie ZHANG ; Qing Bo LIU
Journal of Southern Medical University 2023;43(1):85-91
OBJECTIVE:
To evaluate the effects of CLEC5A expression level on cell proliferation, migration and invasion and epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) and explore the role of CLEC5A in the tumorigenesis and progression of HCC.
METHODS:
The expression level of CLEC5A was detected in 50 pairs of HCC and adjacent tissues using immunohistochemical staining, and its association with clinicopathological parameters of HCC patients was analyzed. Cultured HCC cell line SK-HEP-1 was transfected with a lentiviral vector overexpressing CLEC5A, and the transfection efficiency was verified using real-time fluorescence quantitative PCR and Western blotting. The changes in proliferation, migration and invasion abilities of the transfected cells were analyzed using CCK-8, 5-ethynyl-29-deoxyuridine (EdU) and Transwell assays, and EMT of the cells was determined using Western blotting.
RESULTS:
The protein expression level of CLEC5A was significantly lower in HCC tissues than in the adjacent tissues (P < 0.001). The expression level of CLEC5A was significantly correlated with tumor size (P=0.008), tumor number (P=0.010), histological differentiation (P=0.016), microvascular invasion (P=0.024) and BCLC stage (P=0.040). In SK-HEP-1 cells, overexpression of CLEC5A obviously inhibited the cell proliferation, migration and invasion and reversed EMT phenotype of the cells.
CONCLUSION
CLEC5A is a potential HCC suppressor gene and may serve as a promising therapeutic target for HCC.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Epithelial-Mesenchymal Transition
;
Liver Neoplasms/genetics*
;
Cell Proliferation
;
Cell Differentiation
;
Receptors, Cell Surface/genetics*
;
Lectins, C-Type/genetics*
10.Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway.
Chu-Lan XIAO ; Zhi-Peng ZHONG ; Can LÜ ; Bing-Jie GUO ; Jiao-Jiao CHEN ; Tong ZHAO ; Zi-Fei YIN ; Bai LI
Journal of Integrative Medicine 2023;21(2):184-193
OBJECTIVE:
Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.
METHODS:
A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.
RESULTS:
Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.
CONCLUSION
Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.
Humans
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Proliferating Cell Nuclear Antigen/therapeutic use*
;
Mice, Nude
;
Glycogen Synthase Kinase 3 beta/genetics*
;
beta Catenin/therapeutic use*
;
Liver Neoplasms/drug therapy*
;
Desmin/therapeutic use*
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Hypoxia
;
RNA, Messenger/therapeutic use*
;
Cell Proliferation

Result Analysis
Print
Save
E-mail