1.Association between gaseous pollutants and emergency ambulance dispatches for asthma in Chengdu, China: a time-stratified case-crossover study.
Jianyu CHEN ; Xianyan JIANG ; Chunli SHI ; Ruicong LIU ; Rong LU ; Li ZHANG
Environmental Health and Preventive Medicine 2019;24(1):20-20
OBJECTIVES:
The association between concentrations of sulfur dioxide (SO), nitrogen dioxide (NO), carbon monoxide (CO), ozone (O), and emergency ambulance dispatches (EADs) for asthma was explored in the central Sichuan Basin of southwestern China for the first time.
METHODS:
EADs for asthma were collected from the Chengdu First-Aid Command Center. Pollutant concentrations were collected from 24 municipal environmental monitoring centers and including SO, NO, CO, daily 8-h mean concentrations of O (O-8 h), and particulate matter less than 2.5 μm in aerodynamic diameter (PM). The climatic data were collected from the Chengdu Municipal Meteorological Bureau. All data were collected from years spanning 2013-2017. A time-stratified case-crossover design was used to analyze the data.
RESULTS:
After controlling for temperature, relative humidity, and atmospheric pressure, IQR increases in SO (13 μg/m), NO (17 μg/m), and CO (498 μg/m) were associated with 18.8%, 11.5%, and 3.1% increases in EADs for asthma, respectively. The associations were strongest for EADs and SO, NO, and CO levels with 3-, 5-, and 1-day lags, respectively.
CONCLUSIONS
This study provides additional data to the limited body of literature for potential health risks arising from ambient gaseous pollutants. The results of the study suggest that increased concentrations of SO, NO, and CO were positively associated with emergency ambulance dispatches for asthma in Chengdu, China. Further studies are needed to investigate the effects of individual air pollutants on asthma.
Air Pollutants
;
analysis
;
toxicity
;
Asthma
;
chemically induced
;
epidemiology
;
Carbon Monoxide
;
analysis
;
toxicity
;
China
;
epidemiology
;
Cities
;
Cross-Over Studies
;
Emergency Medical Dispatch
;
statistics & numerical data
;
Environmental Monitoring
;
statistics & numerical data
;
Humans
;
Nitrogen Dioxide
;
analysis
;
toxicity
;
Ozone
;
analysis
;
toxicity
;
Particle Size
;
Particulate Matter
;
analysis
;
toxicity
;
Risk
;
Sulfur Dioxide
;
analysis
;
toxicity
2.Influence of Air Pollution on Hospital Admissions in Adult Asthma in Northeast China.
Ying LIU ; Hao-Dong WANG ; Zhen-Xiang YU ; Shu-Cheng HUA ; Li-Ting ZHOU ; ; Li-Ping PENG
Chinese Medical Journal 2018;131(9):1030-1033
BackgroundAsthma is a common chronic respiratory disease and is related to air pollution exposure. However, only a few studies have concentrated on the association between air pollution and adult asthma. Moreover, the results of these studies are controversial. Therefore, the present study aimed to analyze the influence of various pollutants on hospitalization due to asthma in adults.
MethodsA total of 1019 unrelated hospitalized adult asthma patients from Northeast China were recruited from 2014 to 2016. Daily average concentrations of air pollutants (particulate matter <2.5 μm [PM], particulate matter <10 μm [PM], sulfur dioxide [SO], nitrogen dioxide [NO], and carbon monoxide [CO]) were obtained from the China National Environmental Monitoring Centre website from 2014 to 2016. Cox logistic regression analysis was used to analyze the relationship between air pollutants and hospital admissions in adult asthma.
ResultsThe maximum odds ratio (OR) value for most air pollutants occurred on lag day 1. Lag day 1 was chosen as the exposure period, and 8 days before onset was chosen as the control period. Three pollutants (PM, CO, and SO) were entered into the regression equation, and the corresponding OR (95% confidence interval) was 0.995 (0.991-0.999), 3.107 (1.607-6.010), and 0.979 (0.968-0.990), respectively.
ConclusionsA positive association between hospital admissions and the daily average concentration of CO was observed. CO is likely to be a risk factor for hospital admissions in adults with asthma.
Air Pollutants ; toxicity ; Air Pollution ; adverse effects ; Asthma ; epidemiology ; Carbon Monoxide ; toxicity ; China ; Environmental Monitoring ; statistics & numerical data ; Female ; Hospitalization ; statistics & numerical data ; Humans ; Male ; Odds Ratio ; Particulate Matter ; toxicity ; Risk Factors ; Sulfur Dioxide ; toxicity
3.Effects of Exogenous Carbon Monoxide Releasing Molecules on the Development of Zebrafish Embryos and Larvae.
Jing E SONG ; Jing SI ; ; Rong ZHOU ; ; Hua Peng LIU ; Zhen Guo WANG ; Lu GAN ; ; Fang GUI ; Bin LIU ; Hong ZHANG ;
Biomedical and Environmental Sciences 2016;29(6):453-456
The use of exogenous carbon monoxide releasing molecules (CORMs) provides promise for clinical application; however, the hazard potential of CORMs in vivo remains poorly understood. The developmental toxicity of CORM-3 was investigated by exposure to concentrations ranging from 6.25 to 400 μmol/L during 4-144 h post fertilization. Toxicity endpoints of mortality, spontaneous movement, heart rate, hatching rate, malformation, body length, and larval behavior were measured. CORM-3 disrupted the progression of zebrafish larval development at concentrations exceeding 50 μmol/L, resulting in embryonic developmental toxicity.
Animals
;
Carbon Monoxide
;
pharmacology
;
Cardiotonic Agents
;
toxicity
;
Dose-Response Relationship, Drug
;
Embryo, Nonmammalian
;
drug effects
;
Embryonic Development
;
drug effects
;
Organometallic Compounds
;
toxicity
;
Zebrafish
;
embryology
;
metabolism
4.Toxicology and tissue distribution of Ruthenium (II) CO-releasing molecules and its interaction with endogenous substances.
Peng-peng WANG ; Hua-peng LIU ; Quan-yi ZHAO ; Yong-lin CHEN ; Bin LIU ; Bao-ping ZHANG ; Qian ZHENG
Acta Pharmaceutica Sinica 2013;48(11):1677-1687
Carbon monoxide has been proved to be an important signal molecule in body. Transition metal carbonyl compounds are solidified form of carbon monoxide. Numerous studies have shown that Ruthenium carbonyl carbon monoxide releasing molecules have a strong pharmacological activity. In this paper, five Ruthenium (II) carbonyl CORMs 1-5 were synthesized and their toxicology, tissue distribution and interaction with blood endogenous substances were investigated. The results showed CORMs' IC50 to fibroblasts are ranged from 212.9 to 2089.2 micromol x L(-1). Their oral LD50 to mouse is between 800 to 1600 mg x kg(-1). After repeated administration, CORMs 1 and CORMs 5 haven't shown an obvious influence to rats' liver and kidney function, but caused the injury to liver and kidney cells. The in vivo distribution result revealed the majority of CORMs were distributed in blood, liver and kidney, only a small part of CORMs distributed in lung, heart and spleen. They could scarcely cross the blood-brain barrier and distribute to brain. The non-CO ligands in structure have an obvious relevance to their in vivo absorption and distribution. Interestingly, CORMs could enhance the fluorescence of bovine serum albumin, and this enhancement was in direct proportion with the concentration of CORMs. Under different conditions, interaction of CORMs with glutathione got different type of products, one is Ruthenium (II) tricarbonyl complexes, and Ruthenium (II) dicarbonyl complexes.
Animals
;
Carbon Monoxide
;
chemistry
;
pharmacokinetics
;
toxicity
;
Fibroblasts
;
drug effects
;
Kidney
;
drug effects
;
Liver
;
drug effects
;
Mice
;
Molecular Structure
;
Organometallic Compounds
;
chemical synthesis
;
chemistry
;
pharmacokinetics
;
toxicity
;
Rats
;
Rats, Wistar
;
Ruthenium
;
chemistry
;
pharmacokinetics
;
toxicity
;
Tissue Distribution
5.Nicotine reduces endogenous CO concentration and NOS activity in rat corpus cavernosum.
Hui XU ; Wen-Bo QIN ; Man YU ; Zhi-Yong WANG ; Ying-Hui MA
National Journal of Andrology 2012;18(5):412-415
OBJECTIVETo observe the effects of nicotine on endogenous carbon monoxide (CO) concentration and nitric oxide synthase (NOS) activity in the corpus cavernosum of adult male rats, and explore the possible mechanism of cigarette smoking affecting erectile dysfunction.
METHODSForty adult male rats were equally divided into three treatment groups to receive subcutaneous injection of nicotine at 0.5 mg/kg pre d for 1, 2 and 3 months, and a control group to receive saline only. After treatment, the corpus cavernosum was harvested for detection of CO concentration by modified two-wavelength spectrophotometry and NOS activity by improved Griess measurement.
RESULTSCO concentration and NOS activity were decreased by 9.05 and 13.37%, respectively, after 1 month of nicotine injection (P < 0.01), 16.47 and 22.5% after 2 months (P < 0.01), and 22.99 and 31.74% after 3 months (P < 0.01), as compared with (13.664 +/- 0.404) umol/mg prot and (9.721 +/- 0.470) U/mg prot in the control group.
CONCLUSIONNicotine can reduce endogenous CO concentration and NOS activity in the corpus cavernosum of adult male rats, which suggests the involvement of endogenous CO and NOS in the pathophysiological process of smoking-induced erectile dysfunction .
Animals ; Carbon Monoxide ; metabolism ; Erectile Dysfunction ; chemically induced ; Male ; Nicotine ; toxicity ; Nitric Oxide Synthase ; metabolism ; Penis ; metabolism ; Rats ; Smoking ; adverse effects
6.Protection of carbon monoxide intraperitoneal administration from rat intestine injury induced by lipopolysaccharide.
Shao-hua LIU ; Ke MA ; Bing XU ; Xin-rong XU
Chinese Medical Journal 2010;123(8):1039-1046
BACKGROUNDTreatment with inhaled carbon monoxide (CO) has been shown to ameliorate intestinal injury in experimental animals induced by lipopolysaccharide (LPS) or ischemia-reperfusion. We hypothesized that CO intraperitoneal administration (i.p.) might provide similar protection to inhaled gas. This study aimed to investigate the effects of continuous 2 L/min of 250 ppm CO i.p. on rat intestine injury induced by LPS and to try to develop a more practical means of delivering the gas.
METHODSA total of 72 male Sprague-Dawley rats were randomly assigned to 4 groups: control group, CO i.p. group, LPS group and LPS+CO i.p. group. One hour after intravenously received 5 mg/kg LPS, the rats in LPS group and LPS+CO i.p. group were exposed to room air and 2 L/min of 250 ppm CO i.p., respectively, and the rats of control group and CO i.p. group intravenously received an equal volume of 0.9% NaCl and 1 hour later, were exposed to room air and 2 L/min of 250 ppm CO i.p., respectively. One, 3 and 6 hour of each group after treated with room air or CO i.p., the animals (n = 6 for each time point) were sacrificed and intestinal tissues were collected for determinating the levels of platelet activator factor (PAF) and intercellular adhesion molecule-1 (ICAM-1) with enzyme-lined immunosorbent assays. The maleic dialdehyde (MDA) content and the myeloperoxidase (MPO) activity were determined with a chemical method. The phosphorylated p38 mitogen activated protein kinase (MAPK) expression was assayed with Western blotting and the cell apoptotic rate with flow cytometery. The arterial oxygenation was measured by blood gas analysis, and the pathology determined by light microscope.
RESULTSAfter treatment with 2 L/min of 250 ppm CO i.p., the increase of PAF, ICAM-1, MDA, MPO, and cell apoptotic rate induced by LPS was markedly reduced (P < 0.05 or 0.01), and accompanied by ameliorating intestine injury. Western blotting showed that these effects of CO i.p. were mediated by p38 MAPK pathway. There were no significant differences in all observed parameters between control group and CO i.p. group.
CONCLUSIONThe injury to the intestine via anti-oxidant, anti-inflammation and anti-apoptosis, which may involve the p38 MAPK pathway, was induced by 2 L/min of 250 ppm CO i.p. exerting potent protection against LPS.
Aldehydes ; metabolism ; Animals ; Blotting, Western ; Carbon Monoxide ; administration & dosage ; pharmacology ; therapeutic use ; Flow Cytometry ; Intercellular Adhesion Molecule-1 ; metabolism ; Intestines ; drug effects ; metabolism ; pathology ; Lipopolysaccharides ; toxicity ; Male ; Microscopy ; Peroxidase ; metabolism ; Platelet Activating Factor ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; chemically induced ; drug therapy ; p38 Mitogen-Activated Protein Kinases ; metabolism
7.Role of endogenous and exogenous hydrogen sulfide in acute lung injury induced by LPS in rats.
Xiao-hong ZHOU ; Peng WEI ; Xin-li HUANG ; Yi-ling LING
Chinese Journal of Applied Physiology 2009;25(3):289-294
AIMTo explore the role of endogenous and exogenous hydrogen sulfide (H2S) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and the underlying mechanisms.
METHODS120 Sprague-Dawley rats were randomly divided into four groups: control, LPS (instilled intratracheally to induce ALI), NaHS (H2S donor) + LPS, and propargylglycin (PPG) + LPS. Animals were sacrificed at 4 h or 8 h after agent administration. Lung weight/body weight ratio (LW/BW) was measured and calculated. Morphological changes of lung tissues were observed. H2S concentration, NO concentration (NO) and carbon monoxide (CO) level in plasma were tested. Malondialdehyde (MDA) content, CSE activity, inducible nitric oxide synthase (iNOS) activity and hemeoxygenase (HO) activity of the lung were determined. PMN and protein content in BALF were also tested. Immunohistochemisty technique was performed to examine the expression of iNOS and HO-1 protein in lung tissues. The correlation of H2S content with the above indices was analyzed.
RESULTSCompared with control conditions, severe injuries of lung tissues and a raised LW/BW, MDA content, PMN and protein content in BALF were observed in rats treated with LPS. LPS also lead to a drop in plasma H2S concentration and lung CSE activity. The enzyme activity of iNOS and HO, the protein expression of them and plasma NO, CO level increased after LPS instillation. Administration of NaHS before LPS could attenuated the changes induced by LPS. Pre-administration of PPG exacerbated the injuries induced by LPS, increased PMN and protein content in BALF, the plasma NO level, lung iNOS activity and its protein expression, but there was no prominent variation in CO level, HO activity and HO-1 protein expression compared with those of LPS group. The H2S content was positively correlated with CSE activity, CO content and HO-1activity (r = 0.945-0.987, P < 0.01), and negatively correlated with the other indices (r = -0.994 - -0.943, P < 0.01).
CONCLUSIONDownregulation of H2S/CSE was involved in the pathogenesis of acute lung injury induced by LPS. Endogenous and exogenous H2S provided protection against the lung injuries, which might be explained by its anti-oxidative effects, attenuating inflammatory over-reaction in lung induced by PMN,the downregulation NO/iNOS system and the upregulation of CO/HO-1 system.
Acute Lung Injury ; chemically induced ; physiopathology ; Animals ; Antioxidants ; metabolism ; pharmacology ; Bronchoalveolar Lavage Fluid ; Carbon Monoxide ; metabolism ; Heme Oxygenase (Decyclizing) ; metabolism ; Hydrogen Sulfide ; metabolism ; pharmacology ; Lipopolysaccharides ; antagonists & inhibitors ; toxicity ; Male ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type II ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley
8.Effects of p38 mitogen-activated protein kinase in protection of carbon monoxide against lipopolysaccharide induced rat small intestine injury.
Shao-hua LIU ; Ke MA ; Bing XU ; Xin-rong XU
Chinese Journal of Applied Physiology 2009;25(2):277-281
AIMTo investigate the effects of low concentration carbon monoxide (CO) inhalation or intraperitoneal infusion on lipopolysaccharide (LPS) induced rat small intestine injury and to detect the roles of p38 mitogen-activated protein kinase (MAPK) pathway during CO administration.
METHODSSD rats with small intestine injury induced by 5 mg/kg LPS intravenous injection were challenged by room air, 2.5 x 10(-4)(V/V) CO inhalation or intraperitoneal infusion for 1 h, 3 h and 6 h differently. Then all animals were sacrificed, and the ileum tissues were homogenized for determination the levels of platelet activator factor(PAF) and intercellular adhesion molecule-1 (ICAM-1) with enzyme-lined immunosorbent assay, the pathology with light microscope, and the phosphorylated p38 MAPK expression with Western blot.
RESULTSCompared with either control, CO inhalation or intraperitoneal infusion group at the same time point, the levels of PAF, ICAM-1 and the phosphorylated p38 MAPK of LPS group were increased (all P < 0.01), but there were no statistics differences at the different time point of this group. PAF and ICAM-1 in both LPS injection + CO inhalation group and LPS injection + CO intraperitoneal infusion group were significantly lower than the corresponding value in LPS injection group at the same time point (all P < 0.05), while the expression of phosphorylated p38 MAPK was further up-regulated than that of LPS injection group (P < 0.05). However, there were no significant differences in these parameters between LPS injection+ CO inhalation group and LPS injection+ CO intraperitoneal infusion group.
CONCLUSIONLow concentration CO inhalation and intraperitoneal infusion exerts the similar protection against LPS induced rat small intestine injury via down-regulating PAF and ICAM-1 expression. This may involve the p38 MAPK pathway.
Animals ; Carbon Monoxide ; pharmacology ; Down-Regulation ; Inflammation ; chemically induced ; Intercellular Adhesion Molecule-1 ; metabolism ; Intestine, Small ; metabolism ; pathology ; Lipopolysaccharides ; antagonists & inhibitors ; toxicity ; Male ; Phosphorylation ; Platelet Activating Factor ; metabolism ; Rats ; Rats, Sprague-Dawley ; p38 Mitogen-Activated Protein Kinases ; metabolism
10.Protection of carbon monoxide inhalation on lipopolysaccharide-induced multiple organ injury in rats.
Shao-hua LIU ; Xin-rong XU ; Ke MA ; Bing XU
Chinese Medical Sciences Journal 2007;22(3):169-176
OBJECTIVETo observe the protection of carbon monoxide (CO) inhalation on lipopolysaccharide (LPS)-induced rat multiple organ injury.
METHODSSprague-Dawley rats with multiple organ injury induced by 5 mg/kg LPS intravenous injection were exposed to room air or 2. 5 x 10(-4) (V/V) CO for 3 hours. The lung and intestine tissues of rats were harvested to measure the expression of heme oxygenase-1 (HO-1) with reverse transcription-polymerase chain reaction, the levels of pulmonary tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and intestinal platelet activator factor (PAF), intercellular adhesion molecule-1 (ICAM-1) with enzyme-linked immunosorbent assay, the content of maleic dialdehyde (MDA) and the activity of myeloperoxidase (MPO) with chemical method, the cell apoptosis rate with flow cytometry, and the pathological changes with light microscope.
RESULTSCO inhalation obviously up-regulated the expression of HO-1 in lung (5.43 +/- 0.92) and intestine (6.29 +/- 1.56) in LPS + CO group compared with (3.08 +/- 0.82) and (3.97 +/- 1.16) in LPS group (both P < 0.05). The levels of TNF-alpha, IL-6 in lung and PAF, ICAM-1 in intestine of LPS + CO group were 0.91 +/- 0.25, 0.64 +/- 0.05, 1.19 +/- 0.52, and 1.83 +/- 0.35 pg/mg, respectively, significantly lower than the corresponding values in LPS group (1.48 +/- 0.23, 1.16 +/- 0.26, 1.84 +/- 0.73, and 3.48 +/- 0.36 pg/mg, all P < 0.05). The levels of MDA, MPO, and cell apoptosis rate in lung and intestine of LPS + CO group were 1.02 +/- 0.23 nmol/mg, 1.74 +/- 0.17 nmol/mg, 7.18 +/- 1.62 U/mg, 6.30 +/- 0.97 U/mg, 1.60% +/- 0.34%, and 30. 56% +/- 6.33%, respectively, significantly lower than the corresponding values in LPS group (1.27 +/- 0.33 nmol/mg, 2.75 +/- 0.39 nmol/mg, 8.16 +/- 1.49 U/mg, 7.72 +/- 1.07 U/mg, 3.18% +/- 0.51%, and 41.52% +/- 3.36%, all P < 0.05). In addition, injury of lung and intestine induced by LPS was attenuated at presence of CO inhalation.
CONCLUSIONCO inhalation protects rat lung and intestine from LPS-induced injury via anti-oxidantion, anti-inflammation, anti-apoptosis, and up-regulation of HO-1 expression.
Animals ; Base Sequence ; Carbon Monoxide ; administration & dosage ; DNA Primers ; Inhalation Exposure ; Lipopolysaccharides ; toxicity ; Male ; Multiple Organ Failure ; chemically induced ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail