1.Methyl ferulic acid ameliorates ethanol-induced L02 cell steatosis through microRNA-378b-mediated CaMKK2-AMPK pathway.
Ping HUANG ; Xing CHEN ; Rong-Hua MENG ; Jun LU ; Yan ZHANG ; Li LI ; Yong-Wen LI
China Journal of Chinese Materia Medica 2023;48(1):193-201
Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.
Humans
;
Ethanol/toxicity*
;
AMP-Activated Protein Kinases/metabolism*
;
Fatty Liver
;
Triglycerides
;
MicroRNAs/genetics*
;
Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics*
2.NETO2 promotes melanoma progression via activation of the Ca2+/CaMKII signaling pathway.
Susi ZHU ; Xu ZHANG ; Yeye GUO ; Ling TANG ; Zhe ZHOU ; Xiang CHEN ; Cong PENG
Frontiers of Medicine 2023;17(2):263-274
Melanoma is the most aggressive cutaneous tumor. Neuropilin and tolloid-like 2 (NETO2) is closely related to tumorigenesis. However, the functional significance of NETO2 in melanoma progression remains unclear. Herein, we found that NETO2 expression was augmented in melanoma clinical tissues and associated with poor prognosis in melanoma patients. Disrupting NETO2 expression markedly inhibited melanoma proliferation, malignant growth, migration, and invasion by downregulating the levels of calcium ions (Ca2+) and the expression of key genes involved in the calcium signaling pathway. By contrast, NETO2 overexpression had the opposite effects. Importantly, pharmacological inhibition of CaMKII/CREB activity with the CaMKII inhibitor KN93 suppressed NETO2-induced proliferation and melanoma metastasis. Overall, this study uncovered the crucial role of NETO2-mediated regulation in melanoma progression, indicating that targeting NETO2 may effectively improve melanoma treatment.
Humans
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Melanoma/genetics*
;
Membrane Proteins/genetics*
;
Phosphorylation
;
Signal Transduction
4.A Critical Role for γCaMKII in Decoding NMDA Signaling to Regulate AMPA Receptors in Putative Inhibitory Interneurons.
Xingzhi HE ; Yang WANG ; Guangjun ZHOU ; Jing YANG ; Jiarui LI ; Tao LI ; Hailan HU ; Huan MA
Neuroscience Bulletin 2022;38(8):916-926
CaMKII is essential for long-term potentiation (LTP), a process in which synaptic strength is increased following the acquisition of information. Among the four CaMKII isoforms, γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons (LTPE→I). However, the molecular mechanism underlying how γCaMKII mediates LTPE→I remains unclear. Here, we show that γCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10-30 Hz range. Following stimulation, γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95. Knocking down γCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors (AMPARs) in putative inhibitory interneurons, which are restored by overexpression of γCaMKII but not its kinase-dead form. Taken together, these data suggest that γCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons.
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
Hippocampus/metabolism*
;
Interneurons/physiology*
;
Long-Term Potentiation/physiology*
;
N-Methylaspartate/metabolism*
;
Receptors, AMPA/physiology*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Synapses/physiology*
5.Dysregulation of MAD2L1/CAMK2A/PTTG1 Gene Cluster Maintains the Stemness Characteristics of Uterine Corpus Endometrial Carcinoma.
Jing ZHENG ; Yi-Wen ZHANG ; Zong-Fu PAN
Acta Academiae Medicinae Sinicae 2021;43(5):685-695
Objective To study the stemness characteristics of uterine corpus endometrial carcinoma(UCEC)and its potential regulatory mechanism.Methods Transcriptome sequencing data of UCEC was obtained from The Cancer Genome Atlas.Gene expression profile was normalized by edgeR package in R3.5.1.A one-class logistic regression machine learning algorithm was employed to calculated the mRNA stemness index(mRNAsi)of each UCEC sample.Then,the prognostic significance of mRNAsi and candidate genes was evaluated by survminer and survival packages.The high-frequency sub-pathways mining approach(HiFreSP)was used to identify the prognosis-related sub-pathways enriched with differentially expressed genes(DEGs).Subsequently,a gene co-expression network was constructed using WGCNA package,and the key gene modules were analyzed.The clusterProfiler package was adopted to the function annotation of the modules highly correlated with mRNAsi.Finally,the Human Protein Atlas(HPA)was retrieved for immunohistochemical validation.Results The mRNAsi of UCEC samples was significantly higher than that of normal tissues(
Calcium-Calmodulin-Dependent Protein Kinase Type 2
;
Endometrial Neoplasms/genetics*
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Mad2 Proteins
;
Multigene Family
;
Neoplastic Stem Cells
;
Prognosis
;
Securin
7.Inhibition of MicroRNA 219 Expression Protects Synaptic Plasticity Activating NMDAR1, CaMKIIγ, and p-CREB after Microwave Radiation.
Li ZHAO ; Lu XIONG ; Yan Hui HAO ; Wen Chao LI ; Ji DONG ; Jing ZHANG ; Bin Wei YAO ; Xin Ping XU ; Li Feng WANG ; Hong Mei ZHOU ; Rui Yun PENG
Biomedical and Environmental Sciences 2020;33(5):359-364
Animals
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2
;
genetics
;
metabolism
;
Cyclic AMP Response Element-Binding Protein
;
genetics
;
metabolism
;
Male
;
MicroRNAs
;
radiation effects
;
Microwaves
;
adverse effects
;
Neuronal Plasticity
;
radiation effects
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
genetics
;
metabolism
8.The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice.
Yong Hyun KO ; Seung Hwan KWON ; Ji Young HWANG ; Kyung In KIM ; Jee Yeon SEO ; Thi Lien NGUYEN ; Seok Yong LEE ; Hyoung Chun KIM ; Choon Gon JANG
Biomolecules & Therapeutics 2018;26(2):109-114
Liquiritigenin (LQ) is a flavonoid that can be isolated from Glycyrrhiza radix. It is frequently used as a tranditional oriental medicine herbal treatment for swelling and injury and for detoxification. However, the effects of LQ on cognitive function have not been fully explored. In this study, we evaluated the memory-enhancing effects of LQ and the underlying mechanisms with a focus on the N-methyl-D-aspartic acid receptor (NMDAR) in mice. Learning and memory ability were evaluated with the Y-maze and passive avoidance tests following administration of LQ. In addition, the expression of NMDAR subunits 1, 2A, and 2B; postsynaptic density-95 (PSD-95); phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII); phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2); and phosphorylation of cAMP response element binding (CREB) proteins were examined by Western blot. In vivo, we found that treatment with LQ significantly improved memory performance in both behavioral tests. In vitro, LQ significantly increased NMDARs in the hippocampus. Furthermore, LQ significantly increased PSD-95 expression as well as CaMKII, ERK, and CREB phosphorylation in the hippocampus. Taken together, our results suggest that LQ has cognition enhancing activities and that these effects are mediated, in part, by activation of the NMDAR and CREB signaling pathways.
Animals
;
Behavior Rating Scale
;
Blotting, Western
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2
;
Cognition
;
Glycyrrhiza
;
Hippocampus
;
In Vitro Techniques
;
Learning
;
Medicine, East Asian Traditional
;
Memory
;
Mice*
;
N-Methylaspartate*
;
Phosphorylation
;
Phosphotransferases
;
Protein Kinases
;
Receptors, N-Methyl-D-Aspartate*
;
Response Elements
9.Protective effects of genistein on Aβ₂₅₋₃₅-induced PC12 cell injury via regulating CaM-CaMKIV signaling pathway.
Biao CAI ; Shu YE ; Yan WANG ; Ru-Peng HUA ; Ting-Ting WANG ; Li Jing LIX ; Ai-Juan JIANG ; Guo-Ming SHEN
China Journal of Chinese Materia Medica 2018;43(3):571-576
Genistein is a kind of isoflavone compounds, also called phytoestrogens, with clinical effects on cardiovascular disease, cancer and postmenopausal-related gynecological diseases, and also has the potentiality in the prevention and treatment of Alzheimer's disease(AD). In this study, the protective effect of genistein on Aβ₂₅₋₃₅-induced PC12 cell injury and effect on CaM-CaMKIV signaling pathway were observed to investigate its mechanism for AD. PC12 cells were cultured and then the safe concentration of genistein and the modeling concentration and optimal time point of administration of Aβ₂₅₋₃₅ were screened by MTT assay. After being pretreated with different concentrations of genistein(25, 50, 100 μmol·L⁻¹) on PC12 cells, the AD model of PC12 cells was induced by Aβ₂₅₋₃₅. Then the survival rate of cells was detected by MTT assay; morphological change of cells was observed under the inverted microscope, and apoptosis of cells was assessed by AO/EB fluorescence staining; the neuroprotective effects of genistein on AD cell model were observed and the optimal concentration of genistein was determined. Expressions of mRNA and protein levels of CaM, CaMKK, CaMKIV and tau were detected by qRT-PCR and Western blot assay, respectively. The results showed that as compared with the blank group, the cell survival rate was decreased; the cell damage and apoptosis were increased; and the expressions of mRNA and protein levels of CaM, CaMKK, CaMKIV and tau were increased in AD model group. Genistein could significantly improve the cell survival rate, reduce the cell damage and apoptosis of AD cell model, and significantly down-regulate the expressions of mRNA and protein levels of CaM, CaMKK, CaMKIV and tau of AD cell model. These results indicated that genistein has obviously neuroprotective effect on the AD cell model induced by Aβ₂₅₋₃₅, and the mechanism may be related to the down-regulation of CaM-CaMKIV signaling pathway and Tau protein expression.
Amyloid beta-Peptides
;
Animals
;
Apoptosis
;
Calcium-Calmodulin-Dependent Protein Kinase Type 4
;
metabolism
;
Calmodulin
;
metabolism
;
Cell Survival
;
Genistein
;
pharmacology
;
PC12 Cells
;
Peptide Fragments
;
Protective Agents
;
pharmacology
;
Rats
;
Signal Transduction
;
drug effects
10.Tau-Induced Ca/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.
Yu-Ping WEI ; Jin-Wang YE ; Xiong WANG ; Li-Ping ZHU ; Qing-Hua HU ; Qun WANG ; Dan KE ; Qing TIAN ; Jian-Zhi WANG
Neuroscience Bulletin 2018;34(2):261-269
Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca concentration with a simultaneous increase in the phosphorylation of Ca/calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca/CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca/calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca/CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.
Alzheimer Disease
;
metabolism
;
pathology
;
Calcium
;
metabolism
;
Calcium-Calmodulin-Dependent Protein Kinase Type 4
;
metabolism
;
Cell Nucleus
;
metabolism
;
Enzyme Activation
;
physiology
;
HEK293 Cells
;
Humans
;
Neurons
;
metabolism
;
pathology
;
Phosphorylation
;
Signal Transduction
;
physiology
;
tau Proteins
;
metabolism

Result Analysis
Print
Save
E-mail