1.NETO2 promotes melanoma progression via activation of the Ca2+/CaMKII signaling pathway.
Susi ZHU ; Xu ZHANG ; Yeye GUO ; Ling TANG ; Zhe ZHOU ; Xiang CHEN ; Cong PENG
Frontiers of Medicine 2023;17(2):263-274
Melanoma is the most aggressive cutaneous tumor. Neuropilin and tolloid-like 2 (NETO2) is closely related to tumorigenesis. However, the functional significance of NETO2 in melanoma progression remains unclear. Herein, we found that NETO2 expression was augmented in melanoma clinical tissues and associated with poor prognosis in melanoma patients. Disrupting NETO2 expression markedly inhibited melanoma proliferation, malignant growth, migration, and invasion by downregulating the levels of calcium ions (Ca2+) and the expression of key genes involved in the calcium signaling pathway. By contrast, NETO2 overexpression had the opposite effects. Importantly, pharmacological inhibition of CaMKII/CREB activity with the CaMKII inhibitor KN93 suppressed NETO2-induced proliferation and melanoma metastasis. Overall, this study uncovered the crucial role of NETO2-mediated regulation in melanoma progression, indicating that targeting NETO2 may effectively improve melanoma treatment.
Humans
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Melanoma/genetics*
;
Membrane Proteins/genetics*
;
Phosphorylation
;
Signal Transduction
2.Methyl ferulic acid ameliorates ethanol-induced L02 cell steatosis through microRNA-378b-mediated CaMKK2-AMPK pathway.
Ping HUANG ; Xing CHEN ; Rong-Hua MENG ; Jun LU ; Yan ZHANG ; Li LI ; Yong-Wen LI
China Journal of Chinese Materia Medica 2023;48(1):193-201
Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.
Humans
;
Ethanol/toxicity*
;
AMP-Activated Protein Kinases/metabolism*
;
Fatty Liver
;
Triglycerides
;
MicroRNAs/genetics*
;
Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics*
3.Dysregulation of MAD2L1/CAMK2A/PTTG1 Gene Cluster Maintains the Stemness Characteristics of Uterine Corpus Endometrial Carcinoma.
Jing ZHENG ; Yi-Wen ZHANG ; Zong-Fu PAN
Acta Academiae Medicinae Sinicae 2021;43(5):685-695
Objective To study the stemness characteristics of uterine corpus endometrial carcinoma(UCEC)and its potential regulatory mechanism.Methods Transcriptome sequencing data of UCEC was obtained from The Cancer Genome Atlas.Gene expression profile was normalized by edgeR package in R3.5.1.A one-class logistic regression machine learning algorithm was employed to calculated the mRNA stemness index(mRNAsi)of each UCEC sample.Then,the prognostic significance of mRNAsi and candidate genes was evaluated by survminer and survival packages.The high-frequency sub-pathways mining approach(HiFreSP)was used to identify the prognosis-related sub-pathways enriched with differentially expressed genes(DEGs).Subsequently,a gene co-expression network was constructed using WGCNA package,and the key gene modules were analyzed.The clusterProfiler package was adopted to the function annotation of the modules highly correlated with mRNAsi.Finally,the Human Protein Atlas(HPA)was retrieved for immunohistochemical validation.Results The mRNAsi of UCEC samples was significantly higher than that of normal tissues(
Calcium-Calmodulin-Dependent Protein Kinase Type 2
;
Endometrial Neoplasms/genetics*
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Mad2 Proteins
;
Multigene Family
;
Neoplastic Stem Cells
;
Prognosis
;
Securin
4.Inhibition of MicroRNA 219 Expression Protects Synaptic Plasticity Activating NMDAR1, CaMKIIγ, and p-CREB after Microwave Radiation.
Li ZHAO ; Lu XIONG ; Yan Hui HAO ; Wen Chao LI ; Ji DONG ; Jing ZHANG ; Bin Wei YAO ; Xin Ping XU ; Li Feng WANG ; Hong Mei ZHOU ; Rui Yun PENG
Biomedical and Environmental Sciences 2020;33(5):359-364
Animals
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2
;
genetics
;
metabolism
;
Cyclic AMP Response Element-Binding Protein
;
genetics
;
metabolism
;
Male
;
MicroRNAs
;
radiation effects
;
Microwaves
;
adverse effects
;
Neuronal Plasticity
;
radiation effects
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
genetics
;
metabolism
5.Study on interference effect of Sijunzi decoction on brain-gut CaM/CaMK II of spleen Qi deficiency syndrome rats.
Rong TIAN ; Zi-han GONG ; Xiao-yi YANG ; Li-ming ZHU ; Yong-qiang DUAN ; Ying-xia CHENG ; Juan DU ; Yan WANG
China Journal of Chinese Materia Medica 2015;40(20):4075-4079
OBJECTIVETo observe the dynamic time-phase expressions of key genes of brain-gut CaM signal pathway of spleen Qi deficiency rats and the intervention effect of Sijunzi decoction.
METHODMale Wistar rats were randomly divided into the normal control group, model 14 d, 21 d, 28 d groups, and Sijunzi decoction 14 d, 21 d, 28 d groups. Except for the normal control group, the remaining groups were included into the spleen Qi deficiency model with the bitter cold breaking Qi method (ig 7.5 g · kg⁻¹ · d⁻¹ of Rheum officinale, Fructus aurantii immaturus, Magnolia officinalis preparation) and the exhaustive swimming method. On the 7th day after the modeling, the Sijunzi decoction groups were orally administered with Sijunzi decoction 20 g · kg⁻¹ · d⁻¹. The expressions of key genes CaM/CaMK II of CaM signaling pathway in hippocampus and intestine at different time points by immunohistochemical method and Western blot. At the same time, the intervention effect of Sijunzi decoction on spleen Qi deficiency rats and its mechanism were analyzed.
RESULTSpleen Qi deficiency rats showed higher intestinal CaM/CaMK II expression and lower hippocampus CaM/CaMK II expression than normal rats (P < 0.05, P < 0.01). After the treatment of Sijunzi decoction, spleen Qi deficiency rats showed reduction in intestinal CaM/CaMK II expression and increase in hippocampus CaM/CaMK II expression (P < 0.05, P < 0.01).
CONCLUSIONThe formation of spleen Qi deficiency syndrome may be related to the high expression of CaM/CaMK II in small intestine tissues and its low expression in hippocampus tissues. Sijunzi decoction may achieve the therapeutic effect in spleen Qi deficiency syndrome by reducing the CaM/CaMK II expression in intestinal tissues and increasing it in hippocampus tissues.
Animals ; Brain ; drug effects ; enzymology ; metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; genetics ; metabolism ; Calmodulin ; metabolism ; Drugs, Chinese Herbal ; administration & dosage ; Humans ; Intestines ; drug effects ; enzymology ; metabolism ; Male ; Qi ; Rats ; Rats, Wistar ; Spleen ; drug effects ; Splenic Diseases ; drug therapy ; enzymology ; genetics ; metabolism
6.Simultaneous deletion of floxed genes mediated by CaMKIIalpha-Cre in the brain and in male germ cells: application to conditional and conventional disruption of Goalpha.
Chan Il CHOI ; Sang Phil YOON ; Jung Mi CHOI ; Sung Soo KIM ; Young Don LEE ; Lutz BIRNBAUMER ; Haeyoung SUH-KIM
Experimental & Molecular Medicine 2014;46(5):e93-
The Cre/LoxP system is a well-established approach to spatially and temporally control genetic inactivation. The calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIalpha) promoter limits expression to specific regions of the forebrain and thus has been utilized for the brain-specific inactivation of the genes. Here, we show that CaMKIIalpha-Cre can be utilized for simultaneous inactivation of genes in the adult brain and in male germ cells. Double transgenic Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice generated by crossing CaMKIIalpha-Cre(+/Cre) mice with floxed ROSA26 lacZ reporter (Rosa26(+/stop-lacZ)) mice exhibited lacZ expression in the brain and testis. When these mice were mated to wild-type females, about 27% of the offspring were whole body blue by X-gal staining without inheriting the Cre transgene. These results indicate that recombination can occur in the germ cells of male Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice. Similarly, when double transgenic Gnao(+/f)::CaMKIIalpha-Cre(+/Cre) mice carrying a floxed Go-alpha gene (Gnao(f/f)) were backcrossed to wild-type females, approximately 22% of the offspring carried the disrupted allele (Gnao(Delta)) without inheriting the Cre transgene. The Gnao(Delta/Delta) mice closely resembled conventional Go-alpha knockout mice (Gnao(-/-)) with respect to impairment of their behavior. Thus, we conclude that CaMKIIalpha-Cre mice afford recombination for both tissue- and time-controlled inactivation of floxed target genes in the brain and for their permanent disruption. This work also emphasizes that extra caution should be exercised in utilizing CaMKIIalpha-Cre mice as breeding pairs.
Animals
;
Brain/*metabolism
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
;
Female
;
GTP-Binding Protein alpha Subunits, Gi-Go/*genetics
;
*Gene Deletion
;
Gene Knockout Techniques/*methods
;
Male
;
Mice
;
RNA, Untranslated/genetics
;
Recombination, Genetic
;
Spermatozoa/*metabolism
7.In vitro studies of Raf-CREB, Akt-CREB, and CaMK II -CREB signal transduction pathway regulated by ginsenosides Rb1, Rg1 and Re.
Ting-Ting WANG ; Xian-Zhe DONG ; Wan-Wan LIU ; Yi-Hong CHEN ; Ping LIU
China Journal of Chinese Materia Medica 2014;39(11):2065-2070
OBJECTIVEEffects of ginsenoside Rb1, Rg1 and Re on neurotrophic factor signal transduction pathway using liposome-mediated transfection of eukaryotic cells approach.
METHODThe injury model was established by treating SH-SY5Y cells with 0.6 mmol x L(-1) of corticosterone (CORT) by 24 h. SH-SY5Y cell were pretreated with CORT for 30 min followed by co-treated with 120,60 and 20 micromol x L(-1) of Rb1, 120, 80 and 40 micromol x L(-1) of Rg1 and 120, 80 and 40 micromol x L(-1) of Re for 24 h. Cells viability was determined by Cell Counting Kit (CCK) assay. CREB expressing Luciferase reporter gene was constructed and transfected with plasmid containing hRaf, hcAMP, hAkt, hCaMK gene into human embryonic kidney (HEK293) cells using liposornal transfection reagent lipofection 2000. The expression of CREB before and after it addion of Rb1, Rg1 and Re was examined by Luc assay system and Western blotting.
RESULTCompared with normal control group, CORT significantly decreased the viability of SH-SY5Y cells to 67.21% (P < 0.01). CCK results show that Rb1 (60 micromol x L(-1)), Rg1 (80 micromol x L(-1)) and Re (80 micromol x L(-1)) on SH-SY5Y cells have significant protective effect (P < 0.01). Lucassay and Western blotting results show that the gene and protein levels of CREB increased significantly through the pathway of Raf and Akt with Rb1 and Rg1 (P < 0.01), Re can increase significantly the gene and protein levels of CREB through the pathway of Raf and CaMK II.
CONCLUSIONRb1, Rg1 and Re protects SH-SY5Y cells from CORT-induced damage and the neuroprotective mechanism may be associated with the Raf-CREB, Akt-CREB and CaMK II -CREB pathways.
Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; genetics ; metabolism ; Cell Line ; Cell Survival ; drug effects ; Cyclic AMP Response Element-Binding Protein ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Genes, Reporter ; Ginsenosides ; pharmacology ; Humans ; Panax ; chemistry ; Proto-Oncogene Proteins c-akt ; genetics ; metabolism ; Signal Transduction ; drug effects ; raf Kinases ; genetics ; metabolism
8.CaMKIIγ promotes in vitro and in vivo growth of colorectal cancer cells by upregulating nuclear factor-κB signaling pathway.
Fei XU ; Haiyan QI ; Xiaofang YU ; Rongzhen XU
Journal of Southern Medical University 2013;33(5):649-653
OBJECTIVETo investigate the effects of the γ isoform of Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIγ) on colorectal cancer (CRC) cell growth in vitro and in vivo and explore the mechanisms.
METHODSThe mRNA levels of CaMKIIγ in 5 CRC cell lines, tumor tissues and matched adjacent tissues from 20 CRC patients were examined by semi-quantitative RT-PCR. The lentiviral vector pLenti6.3-MCS-IRES2-eGFP was used to generate the lentivirus particle Lenti-CaMKIIγ for transfecting SW620 cells. The proliferation ability of the transfected SW620-CaMKIIγ cells was assessed by growth curve and colony formation assay. The expression of IKKα, IKKβ, IKKγ, p-IKKα/β, p-IκB andIκB of the transfected cells were determined by Western blotting, and the expression and localization of nuclear factor-κB (NF-κB) p65 were detected by immunofluorescence. In nude mouse models bearing the transfected SW620-CaMKIIγ cell xenograft, the tumor volume was measured twice a week.
RESULTSCaMKIIγ mRNA showed high expressions in the 5 colorectal cancer cell lines. Eighteen of the 20 tumor tissues showed higher expressions of CaMKIIγ than the adjacent non-tumor tissues. The proliferation of transfected SW620-CaMKIIγ cells was enhanced significantly. CaMKIIγ activated NF-κB signaling pathway and led to NF-κB p65 nuclear translocation. In the tumor-bearing mouse model, the volume of the tumors generated by the transfected SW620-CaMKIIγ cells was 1.46- and 1.68-fold higher than that of the tumors with the control cells at the 8th and 12th day, respectively.
CONCLUSIONCaMKIIγ can effectively promote the growth of colorectal cancer cells in vitro and in vivo by activating NF-κB signaling pathway.
Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; genetics ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; Colorectal Neoplasms ; metabolism ; pathology ; Humans ; NF-kappa B ; metabolism ; RNA, Messenger ; genetics ; Signal Transduction ; Up-Regulation
9.The effects of methionine and choline on the expression levels of CaMKII and CREB mRNA and proteins in rats exposed to lead.
Chang FENG ; Guang-qin FAN ; Feng-yun WU ; Fen LIN ; Yan-shu LI ; Ying CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(7):485-487
OBJECTIVETo study the effects of methionine and choline on the expression levels of CaMKII and CREB mRNA and proteins in hippocampus of rats exposed to lead.
METHODSMale SD rats were divided into five groups. (1) control group, (2) group exposed to lead+2 by drinking water with 0.40 g/L lead acetate, (3) group exposed to methionine and choline (1:1, 400 mg/kg), (4) group exposed to 0.40 g/L lead acetate plus methionine and choline (1:1, 100 mg/kg), (5) group exposed to 0.40 g/L lead acetate plus methionine and choline (1:1, 400 mg/kg). In 8 weeks after exposure, all rats were killed. Then CREB mRNA and CaMK II mRNA expression levels in hippocampus were detected by real-time PCR, CREB and CaMK II protein expression levels in hippocampus were measured by western blot assay.
RESULTSThe expression levels (0.743 ± 0.185 and 0.729 ± 0.199) of CaMKII mRNA and CREB mRNA in the hippocampus of lead group were significantly lower than those (0.950 ± 0.238 and 0.901 ± 0.232) of control group (P < 0.05), also the expression levels (0.271 ± 0.045 and 0.212 ± 0.058) of CREB protein and pCREB protein in the hippocampus of lead group were significantly lower than those (0.319 ± 0.058 and 0.506 ± 0.125) of control group (P < 0.05). The expression levels (1.014 ± 0.210 and 1.126 ± 0.379) of CaMKII mRNA and the expression levels (1.029 ± 0.335 and 0.932 ± 0.251) of CREB mRNA in the hippocampus of 2 groups exposed to lead acetate plus methionine and choline were significantly higher than those of lead group (P < 0.05). The expression levels (0.407 ± 0.951 and 0.563 ± 0.178) of CREB protein and pCREB protein in the hippocampus of group exposed to lead acetate plus 400 mg/kg methionine and choline were significantly higher than those of lead group (P < 0.05).
CONCLUSIONMethionine and choline could decrease the inhibition effects of lead on the expression of CaMKII and CREB mRNA or CREB and pCREB proteins in the hippocampus of rats.
Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; metabolism ; Choline ; pharmacology ; Cyclic AMP Response Element-Binding Protein ; metabolism ; Hippocampus ; drug effects ; metabolism ; Lead ; toxicity ; Male ; Methionine ; pharmacology ; RNA, Messenger ; genetics ; Rats ; Rats, Sprague-Dawley
10.PSD95 gene specific siRNAs attenuate neuropathic pain through modulating neuron sensibility and postsynaptic CaMKIIα phosphorylation.
Shen LE ; Li XU ; Chen WEN ; Xu LI ; Liu WEI ; Yu XUE-RONG ; Huang YU-GUANG
Chinese Medical Sciences Journal 2011;26(4):201-207
OBJECTIVETo observe the effects of PSD95 gene specific siRNAs on neuropathic pain relief, neuron viability, and postsynaptic calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) phosphorylation in vitro and in vivo.
METHODSGene-specific siRNAs of rat PSD95 were synthesized chemically for transfection. Adult male Sprague-Dawley (SD) rats were randomly divided into 3 groups: naïve group (n=6), sham group (n=6), and sciatic nerve chronic constriction injury (CCI) group (n=24). The CCI group was further divided into 4 groups (n=6 in each group), which were pretreated with normal saline, transfection vehicle, negative control siRNAs, and PSD95 gene specific siRNAs respectively. All the subgroups received corresponding agents intrathecally for 3 days, started one day before the CCI of sciatic nerve. Both mechanical allodynia and thermal hyperalgesia were measured on post-operative day 3 and 7. PSD95 gene silenced NG108-15 cells were further stimulated by glutamate, with the cell viability and the expression/phosphorylation of CaMKIIα measured by MTT cell proliferation assay and Western blot, respectively.
RESULTSThe siRNAs decreased PSD95 mRNA level significantly both in vivo and in vitro. Neuropathic pain rats pretreated with PSD95 gene specific siRNAs exhibited significant elevation in the mechanical withdrawal threshold and paw withdrawal thermal latency, without affecting the baseline nociception. PSD95 gene silencing enhanced neuronal tolerance against the glutamate excitotoxicity, meanwhile the phosphorylation of CaMKIIα Thr286 was attenuated.
CONCLUSIONPre-emptive administration of PSD95 gene specific siRNAs may attenuate the central sensitization CaMKIIα-related signaling cascades, leading to the relief of neuropathic pain.
Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; metabolism ; Cells, Cultured ; Disks Large Homolog 4 Protein ; Intracellular Signaling Peptides and Proteins ; genetics ; Male ; Membrane Proteins ; genetics ; Neuralgia ; therapy ; Neurons ; physiology ; Phosphorylation ; RNA, Small Interfering ; genetics ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail