1.Ethanol Extract of Glycyrrhiza uralensis Fisch: Antidiarrheal Activity in Mice and Contraction Effect in Isolated Rabbit Jejunum.
Jing WEN ; Jian-Wu ZHANG ; Yuan-Xia LYU ; Hui ZHANG ; Kai-Xi DENG ; Hong-Xue CHEN ; Ying WEI
Chinese journal of integrative medicine 2023;29(4):325-332
OBJECTIVE:
To evaluate the antidiarrheal effect of ethanol extract of Glycyrrhiza uralensis Fisch root (GFR) in vivo and jejunal contraction in vitro.
METHODS:
In vivo, 50 mice were divided into negative control, positive control (verapamil), low-, medium- and high-dose GFR (250, 500, 1,000 mg/kg) groups by a random number table, 10 mice in each group. The antidiarrheal activity was evaluated in castor oil-induced diarrhea mice model by evacuation index (EI). In vitro, the effects of GFR (0.01, 0.03, 0.1, 0.3, 1, 3, and 10 g/L) on the spontaneous contraction of isolated smooth muscle of rabbit jejunum and contraction of pretreated by Acetylcholine (ACh, 10 µmol/L) and KCl (60 mmol/L) were observed for 200 s. In addition, CaCl2 was accumulated to further study its mechanism after pretreating jejunal smooth muscle with GFR (1 and 3 g/L) or verapamil (0.03 and 0.1 µmol/L) in a Ca2+-free-high-K+ solution containing ethylene diamine tetraacetic acid (EDTA).
RESULTS:
GFR (500 and 1,000 mg/kg) significantly reduced EI in castor oil-induced diarrhea model mice (P<0.01). Meanwhile, GFR (0.01, 0.03, 0.1, 0.3, 1, 3, and 10 g/L) inhibited the spontaneous contraction of rabbit jejunum (P<0.05 or P<0.01). Contraction of jejunums samples pretreated by ACh and KCl with 50% effective concentration (EC50) values was 1.05 (0.71-1.24), 0.34 (0.29-0.41) and 0.15 (0.11-0.20) g/L, respectively. In addition, GFR moved the concentration-effect curve of CaCl2 down to the right, showing a similar effect to verapamil.
CONCLUSIONS
GFR can effectively against diarrhea and inhibit intestinal contraction, and these antidiarrheal effects may be based on blocking L-type Ca2+ channels and muscarinic receptors.
Mice
;
Rabbits
;
Animals
;
Antidiarrheals/adverse effects*
;
Jejunum
;
Glycyrrhiza uralensis
;
Castor Oil/adverse effects*
;
Calcium Chloride/adverse effects*
;
Diarrhea/drug therapy*
;
Plant Extracts/adverse effects*
;
Verapamil/adverse effects*
;
Muscle Contraction
2.Effects of Different Treatment Methods on the Contents of Related Growth Factors Released by Platelet Rich Plasma.
Shu-Jun WANG ; Guang-Chao ZHAO ; Kai-Yun LUO ; Ying DU ; Wei WANG ; Qing QI ; Jian-Feng LUAN
Journal of Experimental Hematology 2022;30(6):1834-1838
OBJECTIVE:
To evaluate the effect of sonication, repeated freeze-thaw cycles, calcium salt solution and their combination on the content of related growth factors (GFs) released by platelet rich plasma (PRP).
METHODS:
Twenty PRPs from healthy blood donors were divided into 9 groups, including sonication group, freeze-thaw group, calcium gluconate group, calcium chloride group, sonication + calcium gluconate group, sonication + calcium chloride group, freeze-thaw + calcium gluconate group, freeze-thaw + calcium chloride group, and sonication + freeze-thaw group. After PRP activated by above 9 methods, the content of transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and platelet-derived growth factor-BB (PDGF-BB) were detected by ELISA.
RESULTS:
The platelet concentration of the samples was (966.7±202.6)×109/L. The content of TGF-β1 in sonication + freeze-thaw group was the highest, while the lowest was in freeze-thaw group. The content of VEGF in freeze-thaw + calcium chloride group was the highest, while the lowest was in calcium gluconate group. The content of PDGF-BB in sonication + freeze-thaw group was the highest, while the lowest was in calcium gluconate group. There was no significant differences in the three GFs between calcium gluconate group and calcium chloride group.
CONCLUSION
Among the 9 activated methods of PRP, there is no difference between two calcium salt solutions. And the combination of repeated freeze-thaw cycles and sonication may be the best treatment method to promote PRP to release GFs, while calcium gluconate is the weakest way.
Humans
;
Transforming Growth Factor beta1
;
Vascular Endothelial Growth Factor A
;
Calcium Gluconate
;
Calcium
;
Calcium Chloride
;
Becaplermin
;
Platelet-Rich Plasma
3.Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca²⁺ signaling of differentiated C2C12 myotubes
Tam Thi Thanh PHUONG ; Jieun AN ; Sun Hwa PARK ; Ami KIM ; Hyun Bin CHOI ; Tong Mook KANG
The Korean Journal of Physiology and Pharmacology 2019;23(6):539-547
Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced [Ca²⁺]i transient and reduced sarcoplasmic reticulum (SR) Ca²⁺ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR Ca²⁺-ATPase subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises Ca²⁺ signaling by downregulating the expression of DHPR and SERCA proteins.
Active Transport, Cell Nucleus
;
Calcium Channels, L-Type
;
Cell Membrane
;
Chloride Channels
;
Humans
;
Muscle Development
;
Muscle Fibers, Skeletal
;
Muscle, Skeletal
;
Muscular Diseases
;
Muscular Dystrophies
;
Muscular Dystrophies, Limb-Girdle
;
Myoblasts
;
RNA, Small Interfering
;
Ryanodine Receptor Calcium Release Channel
;
Sarcoplasmic Reticulum
4.Colonic Dysmotility in Murine Partial Colonic Obstruction Due to Functional Changes in Interstitial Cells
Qianqian WANG ; Jingyu ZANG ; Xu HUANG ; Hongli LU ; Wenxie XU ; Jie CHEN
Journal of Neurogastroenterology and Motility 2019;25(4):589-601
BACKGROUND/AIMS: Interstitial cells play important roles in gastrointestinal (GI) neuro-smooth muscle transmission. The underlying mechanisms of colonic dysmotility have not been well illustrated. We established a partial colon obstruction (PCO) mouse model to investigate the changes of interstitial cells and the correlation with colonic motility. METHODS: Western blot technique was employed to observe the protein expressions of Kit, platelet-derived growth factor receptor-α (Pdgfra), Ca²⁺-activated Cl⁻ (Ano1) channels, and small conductance Ca²⁺- activated K⁺ (SK) channels. Colonic migrating motor complexes (CMMCs) and isometric force measurements were employed in control mice and PCO mice. RESULTS: PCO mice showed distended abdomen and feces excretion was significantly reduced. Anatomically, the colon above the obstructive silicone ring was obviously dilated. Kit and Ano1 proteins in the colonic smooth muscle layer of the PCO colons were significantly decreased, while the expression of Pdgfra and SK3 proteins were significantly increased. The effects of a nitric oxide synthase inhibitor (L-NAME) and an Ano1 channel inhibitor (NPPB) on CMMC and colonic spontaneous contractions were decreased in the proximal and distal colons of PCO mice. The SK agonist, CyPPA and antagonist, apamin in PCO mice showed more effect to the CMMCs and colonic smooth muscle contractions. CONCLUSIONS: Colonic transit disorder may be due to the downregulation of the Kit and Ano1 channels and the upregulation of SK3 channels in platelet-derived growth factor receptor-α positive (PDGFRα⁺) cells. The imbalance between interstitial cells of Cajal-Ano1 and PDGFRα-SK3 distribution might be a potential reason for the colonic dysmotility.
Abdomen
;
Animals
;
Apamin
;
Blotting, Western
;
Chloride Channels
;
Colon
;
Down-Regulation
;
Feces
;
Interstitial Cells of Cajal
;
Mice
;
Muscle, Smooth
;
Myoelectric Complex, Migrating
;
Nitric Oxide Synthase
;
Platelet-Derived Growth Factor
;
Silicon
;
Silicones
;
Small-Conductance Calcium-Activated Potassium Channels
;
Up-Regulation
5.EF-hand like Region in the N-terminus of Anoctamin 1 Modulates Channel Activity by Ca²⁺ and Voltage
Min Ho TAK ; Yongwoo JANG ; Woo Sung SON ; Young Duk YANG ; Uhtaek OH
Experimental Neurobiology 2019;28(6):658-669
Anoctamin1 (ANO1) also known as TMEM16A is a transmembrane protein that functions as a Ca²⁺ activated chloride channel. Recently, the structure determination of a fungal Nectria haematococca TMEM16 (nhTMEM16) scramblase by X-ray crystallography and a mouse ANO1 by cryo-electron microscopy has provided the insight in molecular architecture underlying phospholipid scrambling and Ca²⁺ binding. Because the Ca²⁺ binding motif is embedded inside channel protein according to defined structure, it is still unclear how intracellular Ca²⁺ moves to its deep binding pocket effectively. Here we show that EF-hand like region containing multiple acidic amino acids at the N-terminus of ANO1 is a putative site regulating the activity of ANO1 by Ca²⁺ and voltage. The EF-hand like region of ANO1 is highly homologous to the canonical EF hand loop in calmodulin that contains acidic residues in key Ca²⁺-coordinating positions in the canonical EF hand. Indeed, deletion and Ala-substituted mutation of this region resulted in a significant reduction in the response to Ca²⁺ and changes in its key biophysical properties evoked by voltage pulses. Furthermore, only ANO1 and ANO2, and not the other TMEM16 isoforms, contain the EF-hand like region and are activated by Ca²⁺. Moreover, the molecular modeling analysis supports that EF-hand like region could play a key role during Ca²⁺ transfer. Therefore, these findings suggest that EF-hand like region in ANO1 coordinates with Ca²⁺ and modulate the activation by Ca²⁺ and voltage.
Amino Acids, Acidic
;
Animals
;
Calcium
;
Calmodulin
;
Chloride Channels
;
Cryoelectron Microscopy
;
Crystallography, X-Ray
;
EF Hand Motifs
;
Mice
;
Models, Molecular
;
Mutagenesis
;
Nectria
;
Protein Isoforms
6.Bioactive characteristics of an implant surface coated with a pH buffering agent: an in vitro study
Hyung Chul PAE ; Su Kyoung KIM ; Jin Young PARK ; Young Woo SONG ; Jae Kook CHA ; Jeong Won PAIK ; Seong Ho CHOI
Journal of Periodontal & Implant Science 2019;49(6):366-381
PURPOSE: The purpose of this study was to evaluate the effectiveness of conventional sandblasted, large-grit, acid-etched (SLA) surface coated with a pH buffering solution based on surface wettability, blood protein adhesion, osteoblast affinity, and platelet adhesion and activation.METHODS: Titanium discs and implants with conventional SLA surface (SA), SLA surface in an aqueous calcium chloride solution (CA), and SLA surface with a pH buffering agent (SOI) were prepared. The wetting velocity was measured by the number of threads wetted by blood over an interval of time. Serum albumin adsorption was tested using the bicinchoninic acid assay and by measuring fluorescence intensity. Osteoblast activity assays (osteoblast adhesion, proliferation, differentiation, mineralization, and migration) were also performed, and platelet adhesion and activation assays were conducted.RESULTS: In both the wetting velocity test and the serum albumin adsorption assay, the SOI surface displayed a significantly higher wetting velocity than the SA surface (P=0.000 and P=0.000, respectively). In the osteoblast adhesion, proliferation, differentiation, and mineralization tests, the mean values for SOI were all higher than those for SA and CA. On the osteoblast migration, platelet adhesion, and activation tests, SOI also showed significantly higher values than SA (P=0.040, P=0.000, and P=0.000, respectively).CONCLUSIONS: SOI exhibited higher hydrophilicity and affinity for proteins, cells, and platelets than SA. Within the limits of this study, it may be concluded that coating an implant with a pH buffering agent can induce the attachment of platelets, proteins, and cells to the implant surface. Further studies should be conducted to directly compare SOI with other conventional surfaces with regard to its safety and effectiveness in clinical settings.
Adsorption
;
Blood Platelets
;
Calcium Chloride
;
Coated Materials, Biocompatible
;
Dental Implants
;
Fluorescence
;
Hydrogen-Ion Concentration
;
Hydrophobic and Hydrophilic Interactions
;
Immunoassay
;
In Vitro Techniques
;
Miners
;
Osteoblasts
;
Serum Albumin
;
Surface Properties
;
Titanium
;
Wettability
7.Spontaneous Resolution of Iatrogenic Calcinosis Cutis after Parenteral Calcium Gluconate Therapy in Neonates
Kwang Soon SONG ; Si Wook LEE ; Du Han KIM ; Kyung Keun MIN ; Chang Jin YON
The Journal of the Korean Orthopaedic Association 2019;54(2):192-196
Iatrogenic calcinosis cutis is due to the intravenous administration of calcium gluconate or calcium chloride to treat hypocalcemia. The arthors report three cases of calcinosis cutis with calcifications involving the upper or lower extremities in neonates following the extravasation of calcium gluconate. Three neonates, a 2-week-old girl, 4-week-old boy, and a 4-week-old girl, were consulted for indurated nodules after the intravenous administration of calcium gluconate at the intensive care unit. Complete remission of palpable nodule and calcification was observed on the radiograph at three weeks, four weeks and six months after the initial presentation in each. All three neonates with iatrogenic calcinosis curtis were resolved spontaneously without functional and cosmetic complications. According to enhancement of the patient's cognition about benign disease, a suitable explanation of the disease and avoiding unnecessary treatment through an early diagnosis of iatrogenic calcinosis cutis will reduce a number of potential medical malpractice disputes.
Administration, Intravenous
;
Calcinosis
;
Calcium Chloride
;
Calcium Gluconate
;
Calcium
;
Cognition
;
Dissent and Disputes
;
Early Diagnosis
;
Female
;
Humans
;
Hypocalcemia
;
Infant, Newborn
;
Intensive Care Units
;
Lower Extremity
;
Male
;
Malpractice
8.Influence of Implant Surface Coated with pH Buffering Agent on Early Osseointegration
Joo Hyun KANG ; Su Kyoung KIM ; Hyung Chul PAE ; Jin Young PARK ; Jae Kook CHA ; Seong Ho CHOI
Journal of Korean Dental Science 2018;11(1):5-13
PURPOSE: Surface treatment with pH buffering agent has been developed to achieve higher and faster osseointegration. The aim of this study was to evaluate its influence by measuring removal torque and analyzing histological characteristics. MATERIALS AND METHODS: Titanium implants with following surfaces were used in this study: sand-blasted acid-etched (SA) surface (SA group as control I group), SA surface in calcium chloride aqueous solution (CA group as control II group) and SA surface coated with pH buffering agent (pH group as test group). Removal torque test after 2 weeks and bone-to-implant contact and bone area analyses at 2 and 4 weeks were performed. RESULT: The rotational torque values at 2 weeks were significantly higher in pH group (107.5±6.2 Ncm, P < 0.05). The mean values of bone-to-implant contact at 2 and 4 weeks were both higher in pH group (93.0%±6.4% at 2 weeks, 88.6%±5.5% at 4 weeks) than in SA group (49.7%±9.7% at 2 weeks, 47.3%±20.1% at 4 weeks) and CA group (73.7%±12.4% at 2 weeks, 72.5%±10.9% at 4 weeks) with significances (P < 0.05). The means of bone area showed significantly higher numbers in pH group (39.5%±11.3% at 2 weeks, 71.9%±10.9% at 4 weeks, P < 0.05). CONCLUSION: Our findings demonstrated that surface modification with pH buffering agent improved early osseointegration with superior biomechanical property.
Calcium Chloride
;
Dental Implants
;
Hydrogen-Ion Concentration
;
Hydrophobic and Hydrophilic Interactions
;
Osseointegration
;
Statistics as Topic
;
Surface Properties
;
Titanium
;
Torque
9.White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties.
Hany Mohamed Aly AHMED ; Norhayati LUDDIN ; Thirumulu Ponnuraj KANNAN ; Khairani Idah MOKHTAR ; Azlina AHMAD
Restorative Dentistry & Endodontics 2017;42(3):176-187
OBJECTIVES: This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA), which was WMTA combined with calcium chloride dihydrate (CaCl₂·2H₂O), compared to that of WMTA. MATERIALS AND METHODS: Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD), respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs) using methyl-thiazol-diphenyltetrazolium (MTT) assay and under SEM after 24 and 72 hours, respectively. RESULTS: Results showed that the addition of CaCl₂·2H₂O to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05). HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. CONCLUSIONS: The addition of CaCl₂·2H₂O to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects.
Calcium Chloride*
;
Calcium*
;
Cell Survival
;
Cytoplasm
;
Electron Probe Microanalysis
;
Fibroblasts
;
Humans
;
Miners*
;
Periodontal Ligament
;
X-Ray Diffraction
10.Potential Effects of Desalinated Seawater on Arteriosclerosis in Rats.
Lian DUAN ; Li Xia ZHANG ; Shao Ping ZHANG ; Jian KONG ; Hong ZHI ; Ming ZHANG ; Kai LU ; Hong Wei ZHANG
Biomedical and Environmental Sciences 2017;30(10):762-766
To evaluate the potential risk of arteriosclerosis caused by desalinated seawater, Wistar rats were provided desalinated seawater over a 1-year period, and blood samples were collected at 0, 90, 180, and 360 days. Blood calcium, magnesium, and arteriosclerosis-related indicators were investigated. Female rats treated with desalinated seawater for 180 days showed lower magnesium levels than the control rats (P < 0.05). The calcium and magnesium levels in female rats and the magnesium level in male rats were lower than the levels in the controls, following treatment with desalinated seawater for 360 days (P < 0.05). Blood levels of arteriosclerosis-related lipid peroxidation indicators and C-reactive protein (CRP) in the treatment group did not differ from those in the controls. The levels of lipid peroxidation indicators and CRP in rats were not significantly affected by drinking desalinated seawater, and no increase in risk of arteriosclerosis was observed.
Animals
;
Arteriosclerosis
;
chemically induced
;
Calcium
;
blood
;
Female
;
Lipid Peroxidation
;
Magnesium
;
blood
;
Male
;
Rats
;
Rats, Wistar
;
Seawater
;
chemistry
;
Sodium Chloride
;
chemistry

Result Analysis
Print
Save
E-mail