1.Can Astrocytes Store and Recall Memory? Yes, Indeed!
Mridula BHALLA ; C. Justin LEE
Experimental Neurobiology 2024;33(6):263-265
Astrocytes have been known to support neuronal function, but until now, memory storage and recall has thought to be largely controlled by neurons. In this article, we shed light on recent research published by Williamson et al. that, for the first time, shows astrocytes to participate in memory formation and recall.
2.Can Astrocytes Store and Recall Memory? Yes, Indeed!
Mridula BHALLA ; C. Justin LEE
Experimental Neurobiology 2024;33(6):263-265
Astrocytes have been known to support neuronal function, but until now, memory storage and recall has thought to be largely controlled by neurons. In this article, we shed light on recent research published by Williamson et al. that, for the first time, shows astrocytes to participate in memory formation and recall.
3.Can Astrocytes Store and Recall Memory? Yes, Indeed!
Mridula BHALLA ; C. Justin LEE
Experimental Neurobiology 2024;33(6):263-265
Astrocytes have been known to support neuronal function, but until now, memory storage and recall has thought to be largely controlled by neurons. In this article, we shed light on recent research published by Williamson et al. that, for the first time, shows astrocytes to participate in memory formation and recall.
4.Can Astrocytes Store and Recall Memory? Yes, Indeed!
Mridula BHALLA ; C. Justin LEE
Experimental Neurobiology 2024;33(6):263-265
Astrocytes have been known to support neuronal function, but until now, memory storage and recall has thought to be largely controlled by neurons. In this article, we shed light on recent research published by Williamson et al. that, for the first time, shows astrocytes to participate in memory formation and recall.
5.NKCC1 in Neonatal Cochlear Support Cells Reloads Ions Necessary for Cochlear Spontaneous Activity
Kwon-Woo KANG ; Kushal SHARMA ; Shi-Hyun PARK ; Jae Kwang LEE ; Justin C. LEE ; Eunyoung YI
Experimental Neurobiology 2024;33(2):68-76
In the auditory system, the spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from inner supporting cells (ISCs). This ATP release sets off a cascade, activating purinergic autoreceptors, opening of Ca 2+ -activated Cl- channel TMEM16A, Cl- efflux and osmotic cell shrinkage. Then, the shrunken ISCs efficiently regain their original volume, suggesting the existence of mechanisms for refilling Cl- and K + , priming them for subsequent activity. This study explores the potential involvement of NKCCs (Na+ -K+ -Cl- cotransporters) and KCCs (K+ -Cl- cotransporters) in ISC spontaneous activity, considering their capability to transport both Cl- and K+ ions across the cell membrane. Employing a combination of immunohistochemistry, pharmacological interventions, and shRNA experiment, we unveiled the pivotal role of NKCC1 in cochlear spontaneous activity. Immunohistochemistry revealed robust NKCC1 expression in ISCs, persisting until the 2nd postnatal week. Intriguingly, we observed a developmental shift in NKCC1 expression from ISCs to synaptophysin-positive efferent terminals at postnatal day 18, hinting at its potential involvement in modulating synaptic transmission during the post-hearing period. Experiments using bumetanide, a well-known NKCC inhibitor, supported the functional significance of NKCC1 in ISC spontaneous activity. Bumetanide significantly reduced the frequency of spontaneous extracellular potentials (sEP) and spontaneous optical changes (sOCs) in ISCs. NKCC1-shRNA experiments conducted in cultured cochlear tissues further supported these findings, demonstrating a substantial decrease in event frequency and area. Taken together, we revealed the role of NKCC1 in shaping the ISC spontaneous activity that govern auditory pathway development.
6.Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain
Jinhyeong JOO ; Ki Jung KIM ; Jiwoon LIM ; Sun Yeong CHOI ; Wuhyun KOH ; C. Justin LEE
Experimental Neurobiology 2024;33(4):180-192
Bestrophin-1 (BEST1) is a Ca2+ -activated anion channel known for its role in astrocytes. Best1 is permeable to gliotransmitters, including GABA, to contribute to tonic GABA inhibition and modulate synaptic transmission in neighboring neurons. Despite the crucial functions of astrocytic BEST1, there is an absence of genetically engineered cell-type specific conditional mouse models addressing these roles. In this study, we developed an astrocyte-specific BEST1 conditional knock-out (BEST1 aKO) mouse line. Using the embryonic stem cell (ES cell) targeting method, we developed Best1 floxed mice (C57BL/6JCya-Best1em1flox /Cya), which have exon 3, 4, 5, and 6 of Best1 flanked by two loxP sites. By crossing with hGFAP-CreERT2 mice, we generated Best1 floxed/hGFAP-CreERT2 mice, which allowed for the tamoxifen-inducible deletion of Best1 under the human GFAP promoter. We characterized its features across various brain regions, including the striatum, hippocampal dentate gyrus (HpDG), and Parafascicular thalamic nucleus (Pf). Compared to the Cre-negative control, we observed significantly reduced BEST1 protein expression in immunohistochemistry (IHC) and tonic GABA inhibition in patch clamp recordings. The reduction in tonic GABA inhibition was 66.7% in the striatum, 46.4% in the HpDG, and 49.6% in the Pf. Our findings demonstrate that the BEST1 channel in astrocytes significantly contributes to tonic inhibition in the local brain areas. These mice will be valuable for future studies not only on tonic GABA release but also on tonic release of gliotransmitters mediated by astrocytic BEST1.
7.Egocentric 3D Skeleton Learning in a Deep Neural Network Encodes Obese-like Motion Representations
Jea KWON ; Moonsun SA ; Hyewon KIM ; Yejin SEONG ; C. Justin LEE
Experimental Neurobiology 2024;33(3):119-128
Obesity is a growing health concern, mainly caused by poor dietary habits. Yet, accurately tracking the diet and food intake of individuals with obesity is challenging. Although 3D motion capture technology is becoming increasingly important in healthcare, its potential for detecting early signs of obesity has not been fully explored. In this research, we used a deep LSTM network trained with individual identity (identity-trained deep LSTM network) to analyze 3D time-series skeleton data from mouse models with diet-induced obesity. First, we analyzed the data from two different viewpoints: allocentric and egocentric. Second, we trained various deep recurrent networks (e.g., RNN, GRU, LSTM) to predict the identity. Lastly, we tested whether these models effectively encode obese-like motion representations by training a support vector classifier with the latent features from the last layer. Our experimental results indicate that the optimal performance is achieved when utilizing an identity-trained deep LSTM network in conjunction with an egocentric viewpoint. This approach suggests a new way to use deep learning to spot health risks in mouse models of obesity and should be useful for detecting early signs of obesity in humans.
8.A Key Mediator and Imaging Target in Alzheimer’s Disease: Unlocking the Role of Reactive Astrogliosis Through MAOB
Min‑Ho NAM ; Heesu NA ; C. Justin LEE ; Mijin YUN
Nuclear Medicine and Molecular Imaging 2024;58(4):177-184
Astrocytes primarily maintain physiological brain homeostasis. However, under various pathological conditions, they can undergo morphological, transcriptomic, and functional transformations, collectively referred to as reactive astrogliosis.Recent studies have accumulated lines of evidence that reactive astrogliosis plays a crucial role in the pathology of Alzheimer’s disease (AD). In particular, monoamine oxidase B, a mitochondrial enzyme mainly expressed in astrocytes, significantly contributes to neuronal dysfunction and neurodegeneration in AD brains. Moreover, it has been reported that reactive astrogliosis precedes other pathological hallmarks such as amyloid-beta plaque deposition and tau tangle formation in AD.Due to the early onset and profound impact of reactive astrocytes on pathology, there have been extensive efforts in the past decade to visualize these cells in the brains of AD patients using positron emission tomography (PET) imaging. In this review, we summarize the recent studies regarding the essential pathological importance of reactive astrocytes in AD and their application as a target for PET imaging.
9.Negative Influence of the Hunger State on Rule-observance Behavior in Mice
Abdelrahman M. ALKAHWAJI 1 ; Hee-Sup SHIN ; C. Justin LEE
Experimental Neurobiology 2023;32(1):31-41
Developing social strategies to share limited resources equally and maximize the long-term benefits of conflict resolution is critical for appropriate social interactions. During social interactions, social decision-making depends not only on the external environment, but also on internal factors, such as hunger, thirst, or fatigue. In particular, hunger, which is related to food as a physical need, plays a dominant role in social decision-making. However, the consequences of food deprivation on social decision-making are not well understood. We have previously shown that mice with rule-observance behavior are capable of resolving conflict during social decision-making by observing a well-established social strategy based on reward zone allocation. Here, we developed a rule-observance behavior paradigm wherein the hunger state is achieved by applying food restrictions on mice prior to social behavior experiments. We found that the hunger state in mice deteriorated the established social strategy by decreasing reaction time, implying an increase in impulsivity. In contrast, the hunger state did not affect reward zone allocation, indicating no effect on spatial memory. This decrease in reaction time led to a significant increase in the percentage of violations during rule observance and a significant decrease in the amount of reward (payoff equity). Our study proposes that the hunger state exerts a detrimental effect on appropriate social decisionmaking by decreasing reaction time, increasing violation, and decreasing payoff equity in rule-observance behavior.
10.Mapping Astrocytic and Neuronal μ-opioid Receptor Expression in Various Brain Regions Using MOR-mCherry Reporter Mouse
Woojin WON ; Daeun KIM ; Eunjin SHIN ; C. Justin LEE
Experimental Neurobiology 2023;32(6):935-409
The μ-opioid receptor (MOR) is a class of opioid receptors characterized by a high affinity for β-endorphin and morphine. MOR is a G proteincoupled receptor (GPCR) that plays a role in reward and analgesic effects. While expression of MOR has been well established in neurons and microglia, astrocytic MOR expression has been less clear. Recently, we have reported that MOR is expressed in hippocampal astrocytes, and its activation has a critical role in the establishment of conditioned place preference. Despite this critical role, the expression and function of astrocytic MOR from other brain regions are still unknown. Here, we report that MOR is significantly expressed in astrocytes and GABAergic neurons from various brain regions including the hippocampus, nucleus accumbens, periaqueductal gray, amygdala, and arcuate nucleus. Using the MORmCherry reporter mice and Imaris analysis, we demonstrate that astrocytic MOR expression exceeded 60% in all tested regions. Also, we observed similar MOR expression of GABAergic neurons as shown in the previous distribution studies and it is noteworthy that MOR expression is particularly in parvalbumin (PV)-positive neurons. Furthermore, consistent with the normal MOR function observed in the MOR-mCherry mouse, our study also demonstrates intact MOR functionality in astrocytes through iGluSnFr-mediated glutamate imaging. Finally, we show the sex-difference in the expression pattern of MOR in PV-positive neurons, but not in the GABAergic neurons and astrocytes. Taken together, our findings highlight a substantial astrocytic MOR presence across various brain regions.

Result Analysis
Print
Save
E-mail