1.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
2.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
3.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
4.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
5.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
6.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
7.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
8.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
9.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
10.Effects of Air Pollution on Chemosensory Dysfunction in COVID-19 Patients
Young-Sook CHOI ; Byeong-Su JEONG ; Yeon-Kyeng LEE ; Yong-Dae KIM
Journal of Korean Medical Science 2022;37(39):e290-
Background:
In some patients, coronavirus disease 2019 (COVID-19) is accompanied by loss of smell and taste, and this has been reportedly associated with exposure to air pollutants. This study investigated the relationship between the occurrence of chemosensory dysfunction in COVID-19 patients and air pollutant concentrations in Korea.
Methods:
Information on the clinical symptom of chemosensory dysfunction, the date of diagnosis, residential area, age, and sex of 60,194 confirmed COVID-19 cases reported to the Korea Disease Control and Prevention Agency from January 20 to December 31, 2020 was collected. In addition, the daily average concentration of air pollutants for a week in the patients’ residential area was collected from the Ministry of Environment based on the date of diagnosis of COVID-19. A binomial logistic regression model, using age and gender, standardized smoking rate, number of outpatient visits, 24-hour mean temperature and relative humidity at the regional level as covariates, was used to determine the effect of air pollution on chemosensory dysfunction.
Results:
Symptoms of chemosensory dysfunction were most frequent among patients in their 20s and 30s, and occurred more frequently in large cities. The logistic analysis showed that the concentration of particulate matter 10 (PM 10 ) and 2.5 (PM 2.5 ) up to 2 days before the diagnosis of COVID-19 and the concentration of sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), carbon monoxide (CO), and ozone (O 3) at least 7 days before the diagnosis of COVID-19 affected the development of chemosensory dysfunction. In the logistic regression model adjusted for age, sex, standardized smoking rate, number of outpatient visits, and daily average temperature and relative humidity, it was found that an increase in the interquartile range of PM 10 , PM 2.5 , SO 2 , NO 2 , and CO on the day of diagnosis increased the incidence of chemosensory dysfunction 1.10, 1.10, 1.17, 1.31, and 1.19-fold, respectively. In contrast, the O 3 concentration had a negative association with chemosensory dysfunction.
Conclusion
High concentrations of air pollutants such as PM 10 , PM 2.5 , SO 2 , NO 2 , and CO on the day of diagnosis increased the risk of developing chemosensory dysfunction from COVID-19 infection. This result underscores the need to actively prevent exposure to air pollution and prevent COVID-19 infection. In addition, policies that regulate activities and products that create high amounts of harmful environmental wastes may help in promoting better health for all during COVID-19 pandemic.

Result Analysis
Print
Save
E-mail