1.A single-centre experience of His bundle pacing without electrophysiological mapping system: implant success rate, safety, pacing characteristics and one-year follow up.
Swee Leng KUI ; Colin YEO ; Lisa TEO ; Ai Ling HIM ; Sherida Binte SYED HAMID ; Kelvin WONG ; Vern Hsen TAN
Singapore medical journal 2023;64(6):373-378
INTRODUCTION:
Despite the challenges related to His bundle pacing (HBP), recent data suggest an improved success rate with experience. As a non-university, non-electrophysiology specialised centre in Singapore, we report our experiences in HBP using pacing system analyser alone.
METHODS:
Data of 28 consecutive patients who underwent HBP from August 2018 to February 2019 was retrospectively obtained. The clinical and technical outcomes of these patients were compared between two timeframes of three months each. Patients were followed up for 12 months.
RESULTS:
Immediate technical success was achieved in 21 (75.0%) patients (mean age 73.3 ± 10.7 years, 47.6% female). The mean left ventricular ejection fraction was 53.9% ± 12.1%. The indications for HBP were atrioventricular block (n = 13, 61.9%), sinus node dysfunction (n = 7, 33.3%) and upgrade from implantable cardioverter-defibrillator to His-cardiac resynchronisation therapy (n = 1, 4.8%). No significant difference was observed in baseline characteristics between Timeframe 1 and Timeframe 2. Improvements pertaining to mean fluoroscopy time were achieved between the two timeframes. There was one HBP-related complication of lead displacement during Timeframe 1. All patients with successful HBP achieved non-selective His bundle (NSHB) capture, whereas only eight patients had selective His bundle (SHB) capture. NSHB and SHB capture thresholds remained stable at the 12-month follow-up.
CONCLUSION
Permanent HBP is feasible and safe, even without the use of an electrophysiology recording system. This was successfully achieved in 75% of patients, with no adverse clinical outcomes during the follow-up period.
Humans
;
Female
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Male
;
Bundle of His
;
Follow-Up Studies
;
Stroke Volume
;
Retrospective Studies
;
Treatment Outcome
;
Cardiac Pacing, Artificial/adverse effects*
;
Electrocardiography
;
Ventricular Function, Left/physiology*
2.Animal study on left bundle branch current of injury and anatomic location of leads in His-purkinje conduction system pacing.
Liang Ping WANG ; Li Meng JIANG ; Song Jie WANG ; Sheng Jie WU ; Zhou Qing HUANG ; Pei Ren SHAN ; Wei Jian HUANG ; Lan SU
Chinese Journal of Cardiology 2023;51(11):1175-1180
Objective: Explore the relationship between tip of the left bundle branch pacing lead and anatomic location of left bundle branch as well as the mechanism of left bundle branch current of injury. To clarify the clinical value of left bundle branch current of injury during operation. Methods: The pacing leads were implanted in the hearts of two living swines. Intraoperative electrophysiological study confirmed that the left bundle branch or only the deep left ventricular septum was captured at low output. Immediately after operation, the gross specimen of swine hearts was stained with iodine to observe the gross distribution of His-purkinje conduction system on the left ventricular endocardium and its relationship with the leads. Subsequently, the swine hearts were fixed with formalin solution, and the pacing leads were removed after the positions were marked. The swine hearts were then sectioned and stained with Masson and Goldner trichrome, and the relationship between the anatomic location of the conduction system and the tip of the lead was observed under a light microscope. Results: After iodine staining of the specimen, the His-purkinje conduction system was observed with the naked eye in a net-like distribution, and the lead tip was screwed deeply and fixed in the left bundle branch area of the left ventricular subendocardium in the ventricular septum. Masson and Goldner trichrome staining showed that left bundle branch pacing lead directly passed through the left bundle branch when there was left bundle branch potential with left bundle branch current of injury, while it was not directly contact the left bundle branch when there was left bundle branch potential without left bundle branch current of injury. Conclusion: The left bundle branch current of injury observed on intracardiac electrocardiogram during His-purkinje conduction system pacing suggests that the pacing lead directly contacted the conduction bundle or its branches, therefore, the captured threshold was relatively low. Left bundle branch current of injury can be used as an important anatomic and electrophysiological evidence of left bundle branch capture.
Animals
;
Swine
;
Bundle of His/physiology*
;
Ventricular Septum
;
Cardiac Pacing, Artificial
;
Heart Conduction System
;
Electrocardiography
;
Iodine
3.Animal study on left bundle branch current of injury and anatomic location of leads in His-purkinje conduction system pacing.
Liang Ping WANG ; Li Meng JIANG ; Song Jie WANG ; Sheng Jie WU ; Zhou Qing HUANG ; Pei Ren SHAN ; Wei Jian HUANG ; Lan SU
Chinese Journal of Cardiology 2023;51(11):1175-1180
Objective: Explore the relationship between tip of the left bundle branch pacing lead and anatomic location of left bundle branch as well as the mechanism of left bundle branch current of injury. To clarify the clinical value of left bundle branch current of injury during operation. Methods: The pacing leads were implanted in the hearts of two living swines. Intraoperative electrophysiological study confirmed that the left bundle branch or only the deep left ventricular septum was captured at low output. Immediately after operation, the gross specimen of swine hearts was stained with iodine to observe the gross distribution of His-purkinje conduction system on the left ventricular endocardium and its relationship with the leads. Subsequently, the swine hearts were fixed with formalin solution, and the pacing leads were removed after the positions were marked. The swine hearts were then sectioned and stained with Masson and Goldner trichrome, and the relationship between the anatomic location of the conduction system and the tip of the lead was observed under a light microscope. Results: After iodine staining of the specimen, the His-purkinje conduction system was observed with the naked eye in a net-like distribution, and the lead tip was screwed deeply and fixed in the left bundle branch area of the left ventricular subendocardium in the ventricular septum. Masson and Goldner trichrome staining showed that left bundle branch pacing lead directly passed through the left bundle branch when there was left bundle branch potential with left bundle branch current of injury, while it was not directly contact the left bundle branch when there was left bundle branch potential without left bundle branch current of injury. Conclusion: The left bundle branch current of injury observed on intracardiac electrocardiogram during His-purkinje conduction system pacing suggests that the pacing lead directly contacted the conduction bundle or its branches, therefore, the captured threshold was relatively low. Left bundle branch current of injury can be used as an important anatomic and electrophysiological evidence of left bundle branch capture.
Animals
;
Swine
;
Bundle of His/physiology*
;
Ventricular Septum
;
Cardiac Pacing, Artificial
;
Heart Conduction System
;
Electrocardiography
;
Iodine
4.Effectiveness investigation on left bundle branch area pacing in 10 infants and toddlers.
Jing Hao LI ; Xiao Mei LI ; He JIANG ; Yi ZHANG ; Mei Ting LI ; Hui Ming ZHOU
Chinese Journal of Pediatrics 2022;60(8):810-814
Objective: To explore the feasibility, safety and effectiveness of left bundle branch area pacing (LBBAP) in children aged ≤3 years. Methods: A total of 10 children aged ≤3 years who were diagnosed with brady arrhythmia in the First Hospital of Tsinghua University from September 2020 to September 2021 were retrospectively analyzed. All the children met the indication of permanent pacemaker implantation and underwent LBBAP successfully. The intraoperative data (pacing parameters, electrocardiogram and radiographic imaging), cardiac ultrasound data and clinical data during regular postoperative follow-up were recorded. The preoperative and postoperative data were compared using matched samples t test. Results: Ten children (aged (1.6±0.7) years with weight of (10.3±2.5) kg) underwent LBBAP successfully. The QRS wave duration on the postoperative electrocardiogram was (100±9) ms, and the percentage of ventricular pacing was (97±7)%. The postoperative follow-up period was 6 (6, 12) months. At 1 week after operation, the left ventricular end-diastolic diameter Z scores in these children reduced significantly compared with those before operation (1.3±0.6 vs. 3.6±1.1, t=9.37, P<0.001). During the follow-up period, cardiac function was normal and the last left ventricular ejection fraction was (66±4)% in all children. At the last follow-up, the pacing threshold of the 10 children was smaller than 1.0 V and was acceptable. Compared with the intraoperative baseline values, the pacing threshold was slightly higher ((0.8±0.1) vs. (0.5±0.1) V, t=-5.27, P=0.001). However, no significant difference was found regarding sensing threshold ((16±5) vs. (14±4) mV, t=-0.83, P=0.426) and impedance ((584±88) vs. (652±86) Ω, t=2.26, P=0.050). During follow-up, no electrode related complications were recorded. Conclusions: LBBAP is safe and effective for infants and toddlers. Narrow QRS pacing with stable pacing parameters and normal cardiac function could be achieved postoperatively.
Bundle of His
;
Bundle-Branch Block
;
Cardiac Pacing, Artificial/methods*
;
Child, Preschool
;
Electrocardiography/methods*
;
Humans
;
Retrospective Studies
;
Stroke Volume
;
Treatment Outcome
;
Ventricular Function, Left
5.Initial clinical experience of left bundle branch pacing after transcatheter aortic valve implantation.
Tian Jie FENG ; Guang Yuan SONG ; Jie ZHAO ; Yang CHEN ; Guan Nan NIU ; Zheng ZHOU ; Zhen Yan ZHAO ; Mo Yang WANG ; Yong Gang SUI ; Ke Ping CHEN ; Wei HUA ; Yong Jian WU
Chinese Journal of Cardiology 2022;50(2):142-149
Objective: To investigate the efficacy and safety of left bundle branch pacing(LBBP) in patients after transcatheter aortic valve implantation (TAVI). Methods: This is a retrospective study. A total of 35 patients underwent TAVI and received pacemaker implantation from January 2018 to December 2020 in Beijing Fuwai Hospital were enrolled. Patients were divided into LBBP group (n=12) and right ventricular apex pacing (RVAP) group (n=23) according to the pacing position. The success rate of operation in LBBP group was calculated, and the occurrence of complications were observed, and the parameters of pacemaker were measured on the 3rd day and 1, 3 and 6 months after operation. The N-terminal pro-B-type natriuretic peptide (NT-proBNP), echocardiographic and ECG indexes were compared between the two groups on the 3rd day and 1, 3, and 6 months after pacemaker implantation. Result: A total of 35 patients were included, The age was (76.4±7.7) years, including 19 males (54.3%). The procedure time ((86.58±17.10)min vs. (68.74±9.18)min, P<0.001) and fluoroscopy duration ((20.08±4.44)min vs. (17.00±2.26)min, P<0.001) were significantly longer in LBBP group compared with RVAP group. The operation success rate of LBBP group was 11/12. There was no serious operation related complications such as pneumothorax, hemothorax, electrode dislocation, infection, and lower limb bleeding. The patients were followed up for 7.43 (5.21, 9.84) months. The programmed parameters of pacemaker were in the ideal range and stable during follow-up. At 3 and 6 months after operation, the left ventricular ejection fraction in LBBP group was higher than that in RVAP Group (at 3 months: (60.75±2.89)% vs. (57.35±3.33)%, P=0.004; at 6 months: (63.17±3.33)% vs. (56.17±3.97)%, P<0.001), NT-proBNP values was lower in LBBP group than that in RVAP Group (at 3 months: 822 (607, 1 150)ng/L vs. 1 052 (902, 1 536)ng/L, P=0.006; at 6 months: 440 (330,679)ng/L vs. 783 (588, 1 023)ng/L, P=0.001). At 1, 3 and 6 months after operation, the QRS duration was shorter in LBBP group than that in RVAP group (1 month: 99 (97, 107)ms vs. 126(124, 130)ms, P<0.001; 3 months: 98(96, 105)ms vs. 129(128, 133)ms, P<0.001; 6 months: 96(94, 104)ms vs. 130(128, 132)ms, P<0.001). Conclusions: For patients with permanent pacemaker indications after TAVI, LBBP is feasible, safe and reliable. It could improve the cardiac function in the short term, the long-term effect of LBBP needs to be further observed.
Aged
;
Aged, 80 and over
;
Bundle of His
;
Cardiac Pacing, Artificial/methods*
;
Electrocardiography/methods*
;
Fluoroscopy
;
Humans
;
Male
;
Retrospective Studies
;
Stroke Volume
;
Transcatheter Aortic Valve Replacement/adverse effects*
;
Treatment Outcome
;
Ventricular Function, Left
7.The success rate of His-Purkinje system pacing in patients with various sites of atrioventricular block.
Yang GAO ; Miao Miao LI ; Hai Bo YU ; Guo Qing XU ; Bai Ge XU ; Min WU ; Na WANG ; Yan Chun LIANG ; Zu Lu WANG ; Ya Ling HAN
Chinese Journal of Cardiology 2022;50(6):543-548
Objective: To evaluate the success rate of His-Purkinje system pacing (HPSP) in patients with various sites of atrioventricular block (AVB) and provide clinical evidence for the selection of HPSP in patients with AVB. Methods: This is a retrospective case analysis. 637 patients with AVB who underwent permanent cardiac pacemaker implantation and requiring high proportion of ventricular pacing from March 2016 to September 2021 in the Department of Cardiology, General Hospital of Northern Theater Command were enrolled. The site of AVB was determined by electrophysiological examination. His bundle pacing (HBP) was performed in the first 130 patients (20.4%) who were classified as the HBP group and HPSP included HBP and/or left bundle branch pacing (LBBP) was performed in later 507 patients (79.6%) and these patients were classified as the HPSP group. The basic clinical information such as age and sex of the two groups was compared, and the success rates of HBP or HPSP in patients with different sites of AVB and QRS intervals were analyzed. Results: The age of HBP group was (66.4±15.9) years with 75 males (57.7%). The age of HPSP group was (66.8±13.6) years with 288 (56.8%) males. Among 637 patients, 63.0% (401/637) had atrioventricular node block; 22.9% (146/637) had intra-His block; 14.1% (90/637) had distal or inferior His bundle block. Totally, the success rate of HPSP was higher than that of HBP [93.9% (476/507) vs. 86.9% (113/130), P<0.05]. In each group of patients with various AVB sites, the success rate of HPSP was higher than that of HBP respectively and both success rates of HBP and HPSP showed a declining trend with the distant AVB site. The success rate of HBP in patients with atrioventricular node block and intra-His block was higher than that in patients with distal or inferior His bundle block [95.2% (79/83) vs. 47.1% (8/17), P<0.001; 86.7% (26/30) vs. 47.1% (8/17), P=0.010]. The success rate of HPSP was higher than that of HBP in patients with distal or inferior His bundle block [87.7% (64/73) vs 47.1% (8/17), P=0.001]. In patients with QRS<120 ms, 94.9% (520/548) of AVB sites were in atrioventricular node or intra-His, and HBP had a similar high success rate with HPSP [95.6% (109/114) vs. 96.3% (418/434), P=0.943] in these patients. In patients with QRS ≥ 120 ms, 69.7% (62/89) of AVB sites were at distal or inferior His bundle, and the success rate of HBP was only 25.0% (4/16), while the success rate of HPSP was as high as 79.5% (58/73), P<0.001. Conclusions: In patients with QRS<120 ms and atrioventricular node block or intra-His block, success rates of HBP and HPSP are similarly high and HBP might be considered as the first choice. In patients with QRS ≥ 120 ms and AVB site at distal or inferior His bundle, the success rate of HPSP is higher than that of HBP, suggesting LBBP should be considered as the first-line treatment option.
Aged
;
Aged, 80 and over
;
Atrioventricular Block/therapy*
;
Bundle of His/physiology*
;
Cardiac Pacing, Artificial
;
Electrocardiography
;
Female
;
Humans
;
Male
;
Middle Aged
;
Retrospective Studies
;
Treatment Outcome
9.Left ventricular systolic function between left bundle branch pacing and right ventricular septum pacing in patients with pacemaker dependence by three-dimensional speckle tracking imaging.
Heling WEN ; Yu CHEN ; Zhongshu LIANG
Journal of Central South University(Medical Sciences) 2021;46(4):379-384
OBJECTIVES:
To compare the left ventricular systolic function between the 1eft bundle branch pacing (LBBP) and right ventricular septum pacing (RVSP) in patients with pacemaker dependence by three-dimensional speckle tracking imaging (3D-STI).
METHODS:
A total of 65 patients with atrioventricular block (AVB) (Mobitz type II second-degree AVB, high-degree AVB, or third-degree AVB), who underwent permanent cardiac pacing implantation including 32 patients receiving LBBP (LBBP group) and 33 patients receiving RVSP (RVSP group) from June 2018 to June 2019,were enrolled in this study. These patients met the following inclusion criterion: pre-operative left ventricular ejection fraction (LVEF)>50% and ventricular pacing rate>40% at 6-month programming follow-up; and the patients underwent echocardiography at pre-operation and 6 months after operation. The 3D-STI was used to obtain global longitudinal strain (GLS), global circumferential strain (GCS), global radial strain (GRS), and global area strain (GAS).
RESULTS:
All the patients in the LBBP group and the RVSP group had normal LVEF, there was no significant difference between the 2 group (
CONCLUSIONS
For patients with pacemaker dependence and normal LVEF at pre-operation, the cardiac function in the LBBP group is not significantly better than that in the RVSP group in short term follow-up. But in terms of physiologic pacing and long-term cardiac function protection, the 1eft bundle branch pacing is an optimal pacing mode.
Bundle of His
;
Cardiac Pacing, Artificial
;
Humans
;
Pacemaker, Artificial
;
Stroke Volume
;
Ventricular Function, Left
;
Ventricular Septum/diagnostic imaging*
10.Unsolved Questions on the Anatomy of the Ventricular Conduction System
Il Young OH ; Myung Jin CHA ; Tae Hui LEE ; Jeong Wook SEO ; Seil OH
Korean Circulation Journal 2018;48(12):1081-1096
We reviewed the anatomical characteristics of the conduction system in the ventricles of human and ungulate hearts and then raised some questions to be answered by clinical and anatomical studies in the future. The ventricular conduction system is a 3-dimensional structure as compared to the 2-dimensional character of the atrial conduction system. The proximal part consisting of the atrioventricular node, the bundle of His and fascicles are groups of conducting cells surrounded by fibrous connective tissue so as to insulate from the underlying myocardium. Their location and morphological characters are well established. The bundle of His is a cord like structure but the left and right fascicles are broad at the proximal and branching at the distal part. The more distal part of fascicles and Purkinje system are linear networks of conducting cells at the immediate subendocardium but the intra-mural network is detected at the inner half of the ventricular wall. The papillary muscle also harbors Purkinje system not in the deeper part. It is hard to recognize histologically in human hearts but conducting cells as well as Purkinje cells are easily recognized in ungulate hearts. Further observation on human and ungulate hearts with myocardial infarct, we could find preserved Purkinje system at the subendocardium in contrast to the damaged system at the deeper myocardium. Further studies are necessary on the anatomical characteristics of this peripheral conduction system so as to correlate the clinical data on hearts with ventricular arrhythmias.
Arrhythmias, Cardiac
;
Atrioventricular Node
;
Bundle of His
;
Connective Tissue
;
Heart
;
Heart Conduction System
;
Humans
;
Myocardial Infarction
;
Myocardium
;
Papillary Muscles
;
Purkinje Cells
;
Purkinje Fibers
;
Tachycardia, Ventricular

Result Analysis
Print
Save
E-mail