1.Assessment of Benchmark Dose in BEAS-2B Cells by Evaluating the Cell Relative Viability with Particulates in Motorcycle Exhaust
Tao YU ; Xue Yan ZHANG ; Shu Fei LI ; Yu Mei ZHOU ; Bin LI ; Zhong Xu WANG ; Yu Fei DAI ; Sherleen Xue-Fu ADAMSON ; Yu Xin ZHENG ; Ping BIN
Biomedical and Environmental Sciences 2021;34(4):272-281
		                        		
		                        			Objective:
		                        			This study aimed to use an air-liquid interface (ALI) exposure system to simulate the inhalation exposure of motorcycle exhaust particulates (MEPs) and then investigate the benchmark dose (BMD) of MEPs by evaluating cell relative viability (CRV) in lung epithelial BEAS-2B cells.
		                        		
		                        			Methods:
		                        			The MEPs dose was characterized by measuring the number concentration (NC), surface area concentration (SAC), and mass concentration (MC). BEAS-2B cells were exposed to MEPs at different concentrations 
		                        		
		                        			Results:
		                        			Our results reveal that BMD of NC and SAC were estimated by the best-fitting Hill model, while MC was estimated by Polynomial model. The BMDL for CRV following ALI exposure to MEPs were as follows: 364.2#/cm 
		                        		
		                        			Conclusion
		                        			These results indicate that MEPs exposure
		                        		
		                        		
		                        		
		                        			Benchmarking/statistics & numerical data*
		                        			;
		                        		
		                        			Bronchi/physiology*
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Survival/drug effects*
		                        			;
		                        		
		                        			Epithelial Cells/physiology*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Motorcycles
		                        			;
		                        		
		                        			Particulate Matter/adverse effects*
		                        			;
		                        		
		                        			Vehicle Emissions/analysis*
		                        			
		                        		
		                        	
2.Characteristics of Atmospheric Fine Particulate Matter (PM ) Induced Differentially Expressed Proteins Determined by Proteomics and Bioinformatics Analyses.
Kai ZHENG ; Ying CAI ; Bing Yu WANG ; Shuang Jian QIN ; Bo Ru LI ; Hai Yan HUANG ; Xiao Yun QIN ; Ding Xin LONG ; Zhao Hui ZHANG ; Xin Yun XU
Biomedical and Environmental Sciences 2020;33(8):583-592
		                        		
		                        			Objective:
		                        			To screen the differentially expressed proteins (DEPs) in human bronchial epithelial cells (HBE) treated with atmospheric fine particulate matter (PM ).
		                        		
		                        			Methods:
		                        			HBE cells were treated with PM samples from Shenzhen and Taiyuan for 24 h. To detect overall protein expression, the Q Exactive mass spectrometer was used. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and Perseus software were used to screen DEPs.
		                        		
		                        			Results:
		                        			Overall, 67 DEPs were screened in the Shenzhen sample-treated group, of which 46 were upregulated and 21 were downregulated. In total, 252 DEPs were screened in the Taiyuan sample-treated group, of which 134 were upregulated and 118 were downregulated. KEGG analysis demonstrated that DEPs were mainly enriched in ubiquitin-mediated proteolysis and HIF-1 signal pathways in Shenzhen PM samples-treated group. The GO analysis demonstrated that Shenzhen sample-induced DEPs were mainly involved in the biological process for absorption of various metal ions and cell components. The Taiyuan PM -induced DEPs were mainly involved in biological processes of protein aggregation regulation and molecular function of oxidase activity. Additionally, three important DEPs, including ANXA2, DIABLO, and AIMP1, were screened.
		                        		
		                        			Conclusion
		                        			Our findings provide a valuable basis for further evaluation of PM -associated carcinogenesis.
		                        		
		                        		
		                        		
		                        			Air Pollutants
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Computational Biology
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mass Spectrometry
		                        			;
		                        		
		                        			Particle Size
		                        			;
		                        		
		                        			Particulate Matter
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Proteomics
		                        			
		                        		
		                        	
3.Lowest observed adverse effect level of pulmonary pathological alterations due to nitrous acid exposure in guinea pigs.
Masayuki OHYAMA ; Hiroshi NISHIMURA ; Kenichi AZUMA ; Chika MINEJIMA ; Norimichi TAKENAKA ; Shuichi ADACHI
Environmental Health and Preventive Medicine 2020;25(1):56-56
		                        		
		                        			BACKGROUND:
		                        			We previously demonstrated that continuous exposure to nitrous acid gas (HONO) for 4 weeks, at a concentration of 3.6 parts per million (ppm), induced pulmonary emphysema-like alterations in guinea pigs. In addition, we found that HONO affected asthma symptoms, based on the measurement of respiratory function in rats exposed to 5.8 ppm HONO. This study aimed to investigate the dose-response effects of HONO exposure on the histopathological alterations in the respiratory tract of guinea pigs to determine the lowest observed adverse effect level (LOAEL) of HONO.
		                        		
		                        			METHODS:
		                        			We continuously exposed male Hartley guinea pigs (n = 5) to four different concentrations of HONO (0.0, 0.1, 0.4, and 1.7 ppm) for 4 weeks (24 h/day). We performed histopathological analysis by observing lung tissue samples. We examined samples from three guinea pigs in each group under a light microscope and measured the alveolar mean linear intercept (Lm) and the thickness of the bronchial smooth muscle layer. We further examined samples from two guinea pigs in each group under a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
		                        		
		                        			RESULTS:
		                        			We observed the following dose-dependent changes: pulmonary emphysema-like alterations in the centriacinar regions of alveolar ducts, significant increase in Lm in the 1.7 ppm HONO-exposure group, tendency for hyperplasia and pseudostratification of bronchial epithelial cells, and extension of the bronchial epithelial cells and smooth muscle cells in the alveolar duct regions.
		                        		
		                        			CONCLUSIONS
		                        			These histopathological findings suggest that the LOAEL of HONO is < 0.1 ppm.
		                        		
		                        		
		                        		
		                        			Alveolar Epithelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Emphysema
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Guinea Pigs
		                        			;
		                        		
		                        			Hyperplasia
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			Inhalation Exposure
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			ultrastructure
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Microscopy, Electron, Scanning
		                        			;
		                        		
		                        			Microscopy, Electron, Transmission
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Nitrous Acid
		                        			;
		                        		
		                        			toxicity
		                        			
		                        		
		                        	
4.Menthol enhances interleukin-13-induced synthesis and secretion of mucin 5AC in human bronchial epithelial cells.
Mingyang ZHANG ; Jing WANG ; Minchao LI
Journal of Southern Medical University 2020;40(10):1432-1438
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of interleukin (IL) -13 combined with cold stimulation on synthesis and secretion of mucin (MUC) 5AC in human bronchial epithelial cell line 16HBE and explore the role of transient receptor potential 8 (TRPM8) and anti-apoptotic factor B-cell lymphoblast-2 (Bcl-2) in this process.
		                        		
		                        			METHODS:
		                        			16HBE cells were stimulated with 10 ng/mL IL-13, 1 mmol/L menthol, or both (1 mmol/L menthol was added after 6 days of IL-13 stimulation), and the changes in the expression of MUC5AC, intracellular Ca
		                        		
		                        			RESULTS:
		                        			The mRNA and protein expressions of MUC5AC increased significantly in 16HBE cells following stimulation with IL-13, menthol, and both (
		                        		
		                        			CONCLUSIONS
		                        			Menthol combined with IL-13 produces a synergistic effect to promote the synthesis and secretion of MUC5AC in 16HBE cells possibly by activating TRPM8 receptor to upregulate the expression of Bcl-2.
		                        		
		                        		
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			Epithelial Cells/drug effects*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-13
		                        			;
		                        		
		                        			Menthol/pharmacology*
		                        			;
		                        		
		                        			Mucin 5AC
		                        			
		                        		
		                        	
5.Autophagy Attenuates MnCl2-induced Apoptosis in Human Bronchial Epithelial Cells.
Zhun YUAN ; Xian Ping YING ; Wei Jian ZHONG ; Shi Min TIAN ; Yu WANG ; Yong Rui JIA ; Wen CHEN ; Juan Ling FU ; Peng ZHAO ; Zong Can ZHOU
Biomedical and Environmental Sciences 2016;29(7):494-504
OBJECTIVETo investigate the role of autophagy in MnCl2-induced apoptosis in human bronchial epithelial 16HBE cells.
METHODSCell proliferation was measured by MTT assay. Mitochondrial membrane potential (MMP) and apoptosis were measured by flow cytometry. Autophagic vacuoles were detected by fluorescence microscopy. Cellular levels of apoptosis and autophagy-related proteins were measured by western blotting.
RESULTS16HBE cell proliferation was inhibited by MnCl2 in a dose- and time-dependent manner. MnCl2-induced 16HBE cell growth inhibition was related to MMP depolarization prior to the induction of apoptosis. Our data revealed that MnCl2-induced apoptosis in 16HBE cells was mediated by decreased expression of Bcl-2 and increased levels of cleaved caspase-3. It was observed that when we exposed 16HBE cells to MnCl2 in a dose-dependent manner, the formation of autophagic vacuoles and the levels of LC-3B-II were elevated. RNA interference of LC3B in these MnCl2-exposed cells demonstrated that MMP loss and apoptosis were enhanced. Additionally, the pan-caspase inhibitor Z-VAD-FMK increased the cellular levels of Bcl-2 and decreased apoptosis, but did not affect the cellular levels of LC3B in MnCl2-treated 16HBE cells.
CONCLUSIONMnCl2 dose- and time-dependently inhibits 16HBE cell proliferation and induces MMP loss and apoptosis. Autophagy acts in a protective role against MnCl2-induced apoptosis in 16HBE cells.
Amino Acid Chloromethyl Ketones ; pharmacology ; Apoptosis ; drug effects ; Autophagy ; drug effects ; physiology ; Bronchi ; Cell Line ; Chlorides ; pharmacology ; Down-Regulation ; Epithelial Cells ; drug effects ; Gene Expression Regulation ; drug effects ; Humans ; Manganese Compounds ; pharmacology
6.Application of paclitaxel as adjuvant treatment for benign cicatricial airway stenosis.
Xiao-Jian QIU ; Jie ZHANG ; Juan WANG ; Yu-Ling WANG ; Min XU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(6):817-822
		                        		
		                        			
		                        			Benign cicatricial airway stenosis (BCAS) is a potentially life-threatening disease. Recurrence occurs frequently after endoscopic treatment. Paclitaxel is known to prevent restenosis, but its clinical efficacy and safety is undetermined. Therefore, in this study, we investigated the efficacy and associated complications of paclitaxel as adjuvant treatment for BCAS of different etiologies. The study cohort included 28 patients with BCAS resulting from tuberculosis, intubation, tracheotomy, and other etiologies. All patients were treated at the Department of Respiratory Diseases, Beijing Tian Tan Hospital, Capital Medical University, China, between January 2010 and August 2014. After primary treatment by balloon dilation, cryotherapy, and/or high-frequency needle-knife treatment, paclitaxel was applied to the airway mucosa at the site of stenosis using a newly developed local instillation catheter. The primary outcome measures were the therapeutic efficacy of paclitaxel as adjuvant treatment, and the incidence of complications was observed as well. According to our criteria for evaluating the clinical effects on BCAS, 24 of the 28 cases achieved durable remission, three cases had remission, and one case showed no remission. Thus, the durable remission rate was 85.7%, and the combined effective rate was 96.4%. No differences in outcomes were observed among the different BCAS etiologies (P=0.144), and few complications were observed. Our results indicated that paclitaxel as an adjuvant treatment has greater efficacy than previously reported BCAS treatment methods.
		                        		
		                        		
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Chemotherapy, Adjuvant
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Cicatrix
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			surgery
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Paclitaxel
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Postoperative Complications
		                        			;
		                        		
		                        			Respiratory Insufficiency
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			surgery
		                        			;
		                        		
		                        			Tracheal Stenosis
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			surgery
		                        			;
		                        		
		                        			Tracheotomy
		                        			;
		                        		
		                        			adverse effects
		                        			
		                        		
		                        	
7.Effect of aminophylline and simvastatin on airway inflammation and mucus hypersecretion in rats with chronic obstructive pulmonary disease.
Sheng WANG ; Lingling XIONG ; Xue DENG ; Qun ZHOU ; Chunying LI ; Wei REN ; Chundong ZHU
Journal of Central South University(Medical Sciences) 2016;41(1):37-43
		                        		
		                        			OBJECTIVE:
		                        			To observe the role of aminophylline and simvastatin in preventing and curing chronic obstructive pulmonary disease (COPD), and to explore the underlying mechanisms based on airway inflammation and mucus hypersecretion.
		                        		
		                        			METHODS:
		                        			The rat model of COPD was established by combination of cigarette smoking with intratracheal lipopolysaccharide (LPS) injection. Male SD rats were randomly divided into 4 groups (n=10 per group): a control group, a COPD group, an aminophylline group and a simvastatin group. The rats in the control group and the COPD group were treated with normal saline once a day via intragastric administration, while the rats in the aminophylline group and the simvastatin group were treated with aminophylline (5 g/L) and simvastatin (0.5 g/L) 1 mL/100 g once a day via intragastric administration, respectively. Pulmonary function and pathological changes in bronchus and lung were observed. The levels of IL-8, IL-17, and TNF-α in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expressions of TLR4 and mucin 5AC (MUC5AC) in bronchi and lung tissues were detected by real-time PCR and Western blot, respectively.
		                        		
		                        			RESULTS:
		                        			Pulmonary function and the pathophysiologic changes in bronchi and lung tissues in the COPD rats were consistent with typical phenotype of COPD. Compared with the control group, lung function indexes were significantly attenuated in the COPD group, while the levels of IL-8, IL-17, and TNF-α in BALF as well as the mRNA and protein levels of MUC5AC and TLR4 were significantly increased. Compared with the COPD group, lung function indexes were significantly increased in the aminophylline group and simvastatin group (P<0.01), while pulmonary pathological damages, the levels of IL-8, IL-17, and TNF-α in BALF as well as the mRNA and protein levels of MUC5AC and TLR4 were significantly decreased (P<0.01). Compared with the aminophylline group, the peak expiratory flow as well as the levels of IL-8, IL-17, and TNF-α in the simvastatin group were elevated (P<0.05). There are no significant difference in the mRNA and protein levels of MUC5AC and TLR4 between the 2 groups (P﹥0.05).
		                        		
		                        			CONCLUSION
		                        			Aminophylline and simvastatin can decrease IL-8, IL-17, and TNF-α levels in BALF and inhibit the expression of MUC5AC and TLR4 in airway and lung tissues in COPD rats, suggesting that they may have a preventive and therapeutic effect on COPD through reducing the airway inflammation and mucus hypersecretion.
		                        		
		                        		
		                        		
		                        			Aminophylline
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Bronchoalveolar Lavage Fluid
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mucin 5AC
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mucus
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pulmonary Disease, Chronic Obstructive
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Simvastatin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Smoke
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Smoking
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Toll-Like Receptor 4
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Dexamethasone decreases IL-29 expression in house dust mite-stimulated human bronchial epithelial cells.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(6):823-827
		                        		
		                        			
		                        			The aim of this study was to explore the effect of IL-29 on the progression of airway allergic disease by detecting the level of IL-29 in airway allergic cell models stimulated by house dust mite (HDM) in the presence or absence of dexamethasone (DEX). The same batch of human bronchial epithelial cells in exponential growth phase was randomly divided into five groups: blank group (A), 300 ng/mL HDM group (B), 1000 ng/mL HDM group (C), 3000 ng/mL HDM group (D), and 300 ng/mL HDM+100 ng/mL DEX group (E). The IL-29 mRNA expression was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The IL-29 protein expression in cell suspension was detected by ELISA. The results showed that after stimulation with HDM for 24 h, the expression of IL-29 was increased significantly, and after co-stimulation with HDM and DEX for 24 h, the expression of IL-29 in group E was significantly lower than that in the groups stimulated by HDM alone but higher than that in the group A. The differences between the different groups were significant (F=132.957, P<0.01). Additionally, the higher the concentration of HDM was, the more significant the increase in the IL-29 expression was. In conclusion, IL-29 may play a role in the progression of airway allergic disease including asthma.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Dexamethasone
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mites
		                        			
		                        		
		                        	
9.Role of transient receptor potential canonical 1 in airway remodeling and effect of budesonide on its pulmonary expression in asthmatic guinea pigs.
Na LI ; Ye HE ; Min-Chao LI
Journal of Southern Medical University 2015;35(10):1374-1379
OBJECTIVETo explore the role of transient receptor potential canonical 1 (TRPC1) in airway remodeling and the effect of budesonide intervention on its expression in the lungs of guinea pigs with ovalbumin-induced asthma.
METHODSFifty male guinea pigs were randomized into 5 equal groups, including a blank control group, ovalbumin group, ovalbumin+TRPC1 siRNA group, ovalbumin+luciferase siRNA group, and ovalbumin+budesonide group. After corresponding treatments, bronchoalveolar lavage was collected from the guinea pigs for eosinophils analysis and detection of IL-5 and IL-13 levels using ELISA. The lung tissues were stained with HE and Masson's trichrome to observe the bronchial wall thickness, smooth muscle hypertrophy, subepithelial collagen deposition, and lung inflammations. Immunohistochemistry and real-time quantitative PCR were performed to detect TRPC1 protein and mRNA expressions in the lungs, respectively.
RESULTSThe guinea pig models of ovalbumin-induced asthma showed significantly increased thickness of the bronchial wall, smooth muscle hypertrophy, collagen deposition and inflammatory cell infiltration, but these pathologies were obviously alleviated by treatment with TRPC1 siRNA or budesonide (P/0.05). Immunohistochemstry showed that TRPC1 protein was distributed mainly on the cell membrane and in the nuclei of the basal cells or columnar epithelial cells.
CONCLUSIONThe up-regulated expression of TRPC1 ion channel is closely associated with the occurrence and progression of airway remodeling and chronic airway inflammation in asthma. Budesonide can partially suppress airway remodeling and inflammation by regulating the expression of TRPC1.
Airway Remodeling ; Animals ; Asthma ; drug therapy ; metabolism ; Bronchi ; pathology ; Budesonide ; pharmacology ; Disease Models, Animal ; Guinea Pigs ; Inflammation ; metabolism ; Interleukin-13 ; metabolism ; Interleukin-5 ; metabolism ; Leukocyte Count ; Lung ; drug effects ; metabolism ; Male ; Ovalbumin ; TRPC Cation Channels ; metabolism
10.Transcriptional Factor Snail Mediates Epithelial-Mesenchymal Transition in Human Bronchial Epithelial Cells Induced by Silica.
Yong Bin HU ; Fei Feng LI ; Zheng Hao DENG ; Pin Hua PAN
Biomedical and Environmental Sciences 2015;28(7):544-548
		                        		
		                        			
		                        			Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism of silica-induced EMT is poorly understood. In the present study, we investigated the role of Snail in silica-induced EMT in human BECs in vitro. Human BECs were treated with silica at various concentrations and incubation times. Then MTT assay, western blot, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) transfection were performed. We found that silica increased the expression and DNA binding activity of Snail in human BECs. SNAI siRNA inhibited the silica-induced expression of Snail. Moreover, SNAI siRNA upregulated the expression of epithelial marker E-cadherin, but attenuated the expression of mesenchymal marker α-smooth muscle actin and vimentin in silica-stimulated cells. These results suggest that Snail mediates the silica-induced EMT in human BECs.
		                        		
		                        		
		                        		
		                        			Actins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cadherins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Culture Techniques
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Electrophoretic Mobility Shift Assay
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Particle Size
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Silicon Dioxide
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Snail Family Transcription Factors
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail