1.Dexamethasone decreases IL-29 expression in house dust mite-stimulated human bronchial epithelial cells.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(6):823-827
		                        		
		                        			
		                        			The aim of this study was to explore the effect of IL-29 on the progression of airway allergic disease by detecting the level of IL-29 in airway allergic cell models stimulated by house dust mite (HDM) in the presence or absence of dexamethasone (DEX). The same batch of human bronchial epithelial cells in exponential growth phase was randomly divided into five groups: blank group (A), 300 ng/mL HDM group (B), 1000 ng/mL HDM group (C), 3000 ng/mL HDM group (D), and 300 ng/mL HDM+100 ng/mL DEX group (E). The IL-29 mRNA expression was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The IL-29 protein expression in cell suspension was detected by ELISA. The results showed that after stimulation with HDM for 24 h, the expression of IL-29 was increased significantly, and after co-stimulation with HDM and DEX for 24 h, the expression of IL-29 in group E was significantly lower than that in the groups stimulated by HDM alone but higher than that in the group A. The differences between the different groups were significant (F=132.957, P<0.01). Additionally, the higher the concentration of HDM was, the more significant the increase in the IL-29 expression was. In conclusion, IL-29 may play a role in the progression of airway allergic disease including asthma.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Dexamethasone
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mites
		                        			
		                        		
		                        	
2.Transcriptional Factor Snail Mediates Epithelial-Mesenchymal Transition in Human Bronchial Epithelial Cells Induced by Silica.
Yong Bin HU ; Fei Feng LI ; Zheng Hao DENG ; Pin Hua PAN
Biomedical and Environmental Sciences 2015;28(7):544-548
		                        		
		                        			
		                        			Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism of silica-induced EMT is poorly understood. In the present study, we investigated the role of Snail in silica-induced EMT in human BECs in vitro. Human BECs were treated with silica at various concentrations and incubation times. Then MTT assay, western blot, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) transfection were performed. We found that silica increased the expression and DNA binding activity of Snail in human BECs. SNAI siRNA inhibited the silica-induced expression of Snail. Moreover, SNAI siRNA upregulated the expression of epithelial marker E-cadherin, but attenuated the expression of mesenchymal marker α-smooth muscle actin and vimentin in silica-stimulated cells. These results suggest that Snail mediates the silica-induced EMT in human BECs.
		                        		
		                        		
		                        		
		                        			Actins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cadherins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Culture Techniques
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Electrophoretic Mobility Shift Assay
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Particle Size
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Silicon Dioxide
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Snail Family Transcription Factors
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
3.Tumor necrosis factor-α and NF-κB play a role in macrophage-like THP-1 cells promoting coal tar pitch extract-induced tumorigenic transformation of human bronchial epithelial cells.
Feifei FENG ; Qiao ZHANG ; Fanjing ZHOU ; Yongjun WU ; Yiming WU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(1):38-43
OBJECTIVETo characterize the role of tumor necrosis factor-α (TNF-α) and NF-κB play a role in macrophage-like THP-1 cells promoting coal tar pitch extract (CTPE)-induced tumorigenic transformation of human bronchial epithelial cells (BEAS-2B).
METHODSFrom passage 10, CTPE-induced BEAS-2B cells cocultured with THP-1 cells were treated with NF-κB inhibitor-Pyrrolidine dithiocarbamate (PDTC) every 3 passages and TNF-α antibody every passage. Alterations of cell cycle, karyotype and colony formation in soft agar of BEAS-2B cells at passages 20, indicative of tumorigenicity, were determined, respectively. In addition, mRNA and protein levels of TNF receptor associated factor2 (TRAF2) and Cyclin D1 in BEAS-2B cells were measured with Real Time-PCR and Western blot, respectively.
RESULTSThe percentages of S-phase BEAS-2B cells at passage 20 in PDTC group and TNF-α antibody group were (33.97±2.16)% and (34.29±2.04)% respectively, which were less than that in Co-culture+CTPE group of 20th passage [(44.46±0.83)%], P < 0.05; The number of cells with aneuploidy in 100 cells in 20th passage PDTC group and TNF-α antibody group were 40 and 37, and there were significantly different when comparing to that of 20th passage Co-culture+CTPE group (75); The number of colony formation and the rate of colony formation of BEAS-2B cells in soft agar at passage 20 in PDTC group were (15.17±2.48) and (1.51‰±0.25‰), (13.33±2.58)and (1.33‰±0.26‰) in TNF-α antibody group, which were less that those in 20th passage Co-culture+CTPE group [(172.33±12.09) and (17.23‰±1.20‰)], P < 0.05; at the same time, the mRNA and protein levels of TRAF2 and Cyclin D1 in BEAS-2B cells were decreased after PDTC and TNF-α antibody treatment.
CONCLUSIONTNF-α and NF-κB could play an important role in THP-1 cells promoting coal tar pitch extract-induced tumorigenic transformation of BEAS-2B cells by influencing the expression of TRAF2 and Cyclin D1.
Bronchi ; cytology ; Cell Line ; Cell Transformation, Neoplastic ; drug effects ; Coal Tar ; toxicity ; Cyclin D1 ; metabolism ; Epithelial Cells ; cytology ; Humans ; Macrophages ; cytology ; NF-kappa B ; metabolism ; TNF Receptor-Associated Factor 2 ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
4.Effect of thymic stromal lymphopoietin on human bronchial epithelial permeability.
Wenjia LI ; Haijin ZHAO ; Hangming DONG ; Fei ZOU ; Shaoxi CAI
Journal of Southern Medical University 2014;34(6):802-806
OBJECTIVETo investigate the effect of thymic stromal lymphopoietin (TSLP) on the permeablily of monolayer bronchial epithelial cells in vitro.
METHODSCultured human bronchial epithelial cell line 16HBE was exposed to 0.1 or 1 ng/ml TSLP for 0, 0.5, 6, 12, or 24 h, and the epithelial monolayer permeability was assessed by measuring transepithelial electrical resistance (TER), permeability to FITC-labeled dextran (FITC-DX) and expression of E-cadherin.
RESULTSCompared with the control cells group, 16HBE cell monolayer showed significantly increased TER (P<0.001) and decreased FITC-DX fluorescence in the lower chamber (P<0.05) following exposure to 0.1 and 1 ng/ml TSLP, but these changes were not dose-dependent. Exposure to 0.1 ng/ml TSLP resulted in significantly increased expression of E-cadherin. The 16HBE monolayer exposed to 0.1 ng/ml TSLP for 24 h showed the most obvious increase of TER and E-cadherin expression (P<0.05); FITC-DX fluorescence level was markedly decreased after TSLP exposure for 12 h and 24 h (P<0.05), and the effect was more obvious in 12 h group.
CONCLUSIONTSLP can protect the barrier function of normal bronchial epithelial cells in vitro.
Bronchi ; cytology ; Cadherins ; metabolism ; Cell Line ; Cytokines ; pharmacology ; Epithelial Cells ; drug effects ; Humans ; Permeability
5.1,25-dihydroxyvitamin D3 pretreatment inhibits house dust mite-induced thymic stromal lymphopoietin release by human airway epithelial cells.
Liqin ZHOU ; Hangming DONG ; Haijin ZHAO ; Mengchen ZOU ; Lihong YAO ; Fei ZOU ; Shaoxi CAI
Journal of Southern Medical University 2014;34(4):492-496
OBJECTIVETo investigate the effect of 1,25-dihydroxyvitamin D3 (1,25VD3) on house dust mites (HDM)-induced expression of thymic stromal lymphopoietin (TSLP) in human airway epithelial cells in vitro.
METHODSHuman airway epithelial 16HBE cells were incubated with 200, 400, and 800 U/L in the absence or presence of 1,25VD3 (10(-8) mol/L) for 6 h and 24 h, and TSLP mRNA and protein expressions in the cells were assessed using quantitative PCR and ELISA.
RESULTS16HBE cells incubated with HDM at 200, 400, and 800 U/L showed significantly increased TSLP mRNA and protein expressions (P<0.05). Pretreatment of the cells with 1,25VD3 obviously lowered 400 U/L HDM-induced TSLP expressions (P<0.05), but 1,25VD3 added along with HDM in the cells did not produce significant effects on TSLP expressions (P=0.58).
CONCLUSIONBoth 1,25VD3 and HDM can induce TSLP expression and release in 16HBE cells, but pretreatment with 1,25VD3 can decrease HDM-augmented TSLP expression in the cells.
Animals ; Bronchi ; cytology ; Calcitriol ; pharmacology ; Cell Line ; Cytokines ; metabolism ; Epithelial Cells ; drug effects ; metabolism ; Humans ; Pyroglyphidae
6.Induction of adhesion molecule expression in co-culture of human bronchial epithelial cells and neutrophils suppressed by puerarin via down-regulating p38 mitogen-activated protein kinase and nuclear factor κB pathways.
Ye LIU ; Ling-li SHAO ; Wei PANG ; Xiao-mei LAN ; Jian-xin LU ; Yu-long CONG ; Cheng-bin WANG
Chinese journal of integrative medicine 2014;20(5):360-368
OBJECTIVEIn this study, we aimed to investigate the expressions of adhesion molecules on human bronchial epithelial cells and neutrophils in co-culture system, assess the effects of puerarin on suppressing these adhesion molecules expressions, and explore the roles of two crucial signal-transduction elements p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa B (NF-κB) in modulating adhesion molecules expressions.
METHODSNeutrophils and BEAS-2B cells (one human bronchial epithelial cell line) were co-cultured, and adhesion molecules expressions on cell surface were detected using flow cytometry. The mRNA levels of adhesion molecules were assessed by real-time quantitative polymerase chain reaction (real-time qPCR). Phosphorylated p38 MAPK and inhibitor κB were analyzed by Western blot.
RESULTSIn co-culture system, adhesion molecules expressions on BEAS-2B cells and neutrophils were enhanced significantly (P<0.05). Correspondingly, the mRNA levels of adhesion molecules were also increased greatly. Moreover, the pretreatment of peurarin obviously suppressed adhesion molecules expressions on cell surface. Furthermore, phosphorylated p38 MAPK and inhibitor κB in BEAS-2B cells and neutrophils were elevated in co-culture system, but decreased significantly after upon the treatment of peurarin (P<0.05).
CONCLUSIONSCoculture boosted the interactions between human bronchial epithelial cells and neutrophils mimicking airway inflflammation, whereas peurarin decreased the expression of adhesion molecules on cell surface by suppressing the activities of p38 MAPK and NF-κB pathways, and exhibiting its anti-inflflammation activity.
Animals ; Base Sequence ; Bronchi ; cytology ; enzymology ; metabolism ; Cattle ; Cell Adhesion Molecules ; metabolism ; Cell Line ; Coculture Techniques ; DNA Primers ; Down-Regulation ; drug effects ; Epithelial Cells ; enzymology ; metabolism ; Isoflavones ; pharmacology ; NF-kappa B ; metabolism ; Neutrophils ; enzymology ; metabolism ; Phosphorylation ; Real-Time Polymerase Chain Reaction ; p38 Mitogen-Activated Protein Kinases ; metabolism
7.Effect of TRPV1 channel on proliferation and apoptosis of airway smooth muscle cells of rats.
Li-min ZHAO ; Hong-yan KUANG ; Luo-xian ZHANG ; Ji-zhen WU ; Xian-liang CHEN ; Xiao-yu ZHANG ; Li-jun MA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(4):504-509
		                        		
		                        			
		                        			Airway remodeling is an important pathological feature of asthma and the basis of severe asthma. Proliferation of airway smooth muscle cells (ASMCs) is a major contributor to airway remodeling. As an important Ca(2+) channel, transient receptor potential vanilloid 1 (TRPV1) plays the key role in the cell pathological and physiological processes. This study investigated the expression and activity of TRPV1 channel, and further clarified the effect of TRPV1 channel on the ASMCs proliferation and apoptosis in order to provide the scientific basis to treat asthmatic airway remodeling in clinical practice. Immunofluorescence staining and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of TRPV1 in rat ASMCs. Intracellular Ca(2+) was detected using the single cell confocal fluorescence microscopy measurement loaded with Fluo-4/AM. The cell cycles were observed by flow cytometry. MTT assay and Hoechst 33258 staining were used to detect the proliferation and apoptosis of ASMCs in rats respectively. The data showed that: (1) TRPV1 channel was present in rat ASMCs. (2) TRPV1 channel agonist, capsaicin, increased the Ca(2+) influx in a concentration-dependent manner (EC50=284.3±58 nmol/L). TRPV1 channel antagonist, capsazepine, inhibited Ca(2+) influx in rat ASMCs. (3) Capsaicin significantly increased the percentage of S+G2M ASMCs and the absorbance of MTT assay. Capsazepine had the opposite effect. (4) Capsaicin significantly inhibited the apoptosis, whereas capsazepine had the opposite effect. These results suggest that TRPV1 is present and mediates Ca(2+) influx in rat ASMCs. TRPV1 activity stimulates proliferation of ASMCs in rats.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antipruritics
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Capsaicin
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			TRPV Cation Channels
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Glycyrrhizin inhibits human neutrophil elastase-induced mucin 5AC overproduction in human bronchial epithelial cells.
Qingrong XIAO ; Xiangdong ZHOU
Journal of Central South University(Medical Sciences) 2014;39(3):252-257
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of glycyrrhizin (Gly) on human neutrophil elastase (HNE)- induced mucin (MUC) 5AC overproduction in human bronchial epithelial cells (16HBE), and the potential signaling pathway involved in this process.
		                        		
		                        			METHODS:
		                        			The cultured cells were divided into 3 groups: a control group, cultured in serum-free DMEM medium; an HNE group, pretreated with HNE alone; and a Gly group, incubated with HNE and Gly. After stimulation with a variety of Gly concentrations, the cytotoxicity was assessed by methyl thiazolyl tetrazolium method. The mRNA expressions of p38, nuclear factor κB (NF-κB) p65, inhibitory κBα (IκBα) and MUC5AC were detected by real-time PCR. The phosphorylation levels of p38 (p-p38), NF-κB p65 (p-NF-κB p65) and IκBα (p-IκBα) were measured by Western blot while the levels of MUC5AC protein were analyzed by emzyme-linked immunosorbent assay and immunofluorescence.
		                        		
		                        			RESULTS:
		                        			Compared with the control group, the expression levels of MUC5AC mRNA and protein in the HNE group were both significantly increased. There was a significant increase in p-p38 and p-NF-κB p65, while the production of IκBα was much lower than that in the control group. Gly significantly inhibited the increase of MUC5AC, p38 and NF-κB p65, but increased the activity of IκBα.
		                        		
		                        			CONCLUSION
		                        			Glycyrrhizin can inhibit MUC5AC overproduction via p38-NF-κB p65/IκBα signaling pathway.
		                        		
		                        		
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glycyrrhizic Acid
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			I-kappa B Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Leukocyte Elastase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mucin 5AC
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			NF-KappaB Inhibitor alpha
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Transcription Factor RelA
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Effects of TOLL-like receptor 4 on passively sensitized human airway smooth muscle cells proliferation and synthesis and secretion function of TGF-beta1.
Jian-Wei HUANG ; Bi-Wen MO ; Jiang-Hong WEI ; Chang-Ming WANG ; Jin-Rong ZENG ; Qing XU
Chinese Journal of Applied Physiology 2013;29(1):20-24
OBJECTIVETo investigate the activation of Toll like receptor 4 (TLR4) on passively sensitized human airway smooth muscle cells (HASMCs) proliferation and the synthesis and secretion function.
METHODSThrough the cultivation of primary HASMCs, we studied TLR4 expression on cell surface, cell proliferation and transformation of parturient factor-beta1 (TGF-beta1) in asthma under the condition of synthesis and secretion level by passively sensitized HASMCs with asthma serum.
RESULTSCompared with the control group, in passive sensitized group and TNF-alpha group TLR4 expression were significantly increased (P < 0.01), significantly enhanced proliferation (P < 0.01), total protein concentration, IgE secretion and TGF-beta1 were significantly higher (P < 0.01); and all the above parameters were increased more significantly in TNF group compared with those in the target effect of passively group; and those parameters were significantly reduced in anti-TLR4 antibody group compared with those in the target effect both of passively sensitized group and TNF-alpha group.
CONCLUSIONTLR4 on passively sensitized HASMCs activated can induce the excessive proliferation of HASMCs and a large number of synthesis and secretion of TGF-beta1, resulting in changing airway micro-environment, which involved in airway remodeling in asthma.
Airway Remodeling ; Asthma ; metabolism ; pathology ; Bronchi ; cytology ; Cell Proliferation ; Cells, Cultured ; Humans ; Myocytes, Smooth Muscle ; cytology ; metabolism ; Toll-Like Receptor 4 ; immunology ; Transforming Growth Factor beta1 ; metabolism
10.Coal tar pitch smoke extract-induced pyroptosis in human bronchial epithelial cells.
Jin-yan SONG ; Ya-nan FENG ; Li-peng DU ; Wu YAO ; Yi-ming WU ; Wei-dong WU ; Zhen YAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(1):53-55
OBJECTIVETo explore whether coal tar pitch smoke extract (CTP) induced pyroptosis in human bronchial epithelial cells (BEAS-2B).
METHODSBEAS-2B cells were treated with different concentrations of CTP (1, 3 µg/ml) for 8h and 24 h, respectively. Lactic dehydrogenase (LDH) activity and interleukin-1 beta (IL-1β) levels in the supernatants of cell culture media were measured with LDH activity or human IL-1β ELISA kit, respectively. The activity of Caspase-1 was measured with Caspase-1 colorimetric assay kit.
RESULTSThe activity of caspase-1 in 1 and 3 µg/ml CTP groups were (9.29 ± 0.30) and (8.67 ± 0.59) µmol/ml respectively which were both significantly increased compared to that (7.42 ± 0.59) µmol/ml in the control group (P < 0.05) after 8 h exposure, but there was no significant difference in the activity of LDH and levels of IL-1β in the cell culture media among the CTP and control groups. 24 h after exposure, the activity of LDH in the CTP (1, 3 µg/ml) groups were (1323.03 ± 28.53) and (1148.45 ± 16.42) U/dl respectively which were significantly higher than that (1091.93 ± 26.64) U/dl in the control group (P < 0.05), and the levels of IL-1β in the CTP (1 and 3 µg/ml) groups were (125.37 ± 25.00) pg/ml and (92.04 ± 19.09) pg/ml respectively which were significantly higher than that (46.20 ± 14.43) pg/ml in the control group (P < 0.05), but there was no significant difference in the activity of Caspase-1 among CTP and control groups (P < 0.05).
CONCLUSIONCTP treatment induced early increase in caspase-1 activity followed by the increase in LDH activity and IL-1 levels, indicative of pyroptosis in human bronchial epithelial cells.
Apoptosis ; Bronchi ; cytology ; Caspase 1 ; metabolism ; Cell Line ; Coal Tar ; adverse effects ; Epithelial Cells ; cytology ; Humans ; Interleukin-1beta ; metabolism ; L-Lactate Dehydrogenase ; metabolism ; Smoke ; adverse effects
            
Result Analysis
Print
Save
E-mail