2.Inhibition of CD36 and Nogo-B expression inhibited the proliferation and migration of triple negative breast cancer cells.
Chengyi WANG ; Jihong HAN ; Yuanli CHEN
Chinese Journal of Biotechnology 2023;39(10):4168-4188
Cluster of differentiation 36 (CD36) is a membrane glycoprotein receptor capable of binding and transporting fatty acid. Nogo-B regulates the metabolism of fatty acids in the liver and affects the development of liver cancer. To date, it remains unclear whether the interaction between CD36 and Nogo-B affects the proliferation and migration of breast cancer cells. In the current study, we aimed to determine whether the interference of CD36 and Nogo-B affects the proliferation and migration of triple-negative breast cancer (TNBC) cells. The results showed that inhibition of CD36 or Nogo-B alone can inhibit the proliferation and migration of TNBC cells, and the inhibitory effect was more pronounced when CD36 and Nogo-B were inhibited simultaneously. Meanwhile, it was found that inhibition of CD36 and Nogo-B expression can inhibit the expression of Vimentin, B-cell lympoma-2 (BCL2) and proliferating cell nuclear antigen (PCNA). In vivo, knockdown of CD36 or Nogo-B in E0771 cells reduced its tumorigenic ability, which was further enhanced by knockdown of CD36 and Nogo-B simultaneously. Mechanistically, inhibition of CD36 and Nogo-B expression can decrease fatty acid binding protein 4 (FABP4) and fatty acid transport protein 4 (FATP4) expression. Moreover, overexpression of CD36 and Nogo-B-induced cell proliferation was attenuated by FABP4 siRNA, indicating that inhibition of CD36 and Nogo-B expression could inhibit the absorption and transport of fatty acids, thereby inhibiting the proliferation and migration of TNBC. Furthermore, inhibition of CD36 and Nogo-B expression activated the P53-P21-Rb signaling pathway which contributed to the CD36 and Nogo-B-inhibited proliferation and migration of TNBC. Taken together, the results suggest that inhibition of CD36 and Nogo-B can reduce the proliferation and migration of TNBC, which provides new targets for the development of drugs against TNBC.
Humans
;
Triple Negative Breast Neoplasms/metabolism*
;
Cell Movement
;
Cell Proliferation
;
Cell Line, Tumor
;
Fatty Acids
3.Hydnocarpin inhibits malignant progression of triple negative breast cancer via CNOT4-mediated ubiquitination and degradation of YAP.
Hong-Ling OU ; Hui WU ; Yu-Liang REN ; Yuan SI ; Zhong-Qi DUAN ; Xue-Wen LIU
China Journal of Chinese Materia Medica 2023;48(16):4483-4492
This study aims to investigate the effect and mechanism of hydnocarpin(HC) in treating triple negative breast cancer(TNBC). Cell counting kit-8(CCK-8), xCELLigence real-time cellular analysis(RTCA), and colony formation assay were employed to determine the effects of HC on the proliferation of two TNBC cell lines: MDA-MB-231 and MDA-MB-436. The effects of HC on the migration and invasion of TNBC cells were detected by high-content analysis, wound-healing assay, and Transwell assay. The changes in the epithelial-mesenchymal transition(EMT) and the expression of invasion-and migration-associated proteins [E-cadherin, vimentin, Snail, matrix metalloproteinase-2(MMP-2), and MMP-9] were detected by Western blot. Western blot and RT-qPCR were employed to determine the protein and mRNA levels of Yes-associated protein(YAP) and downstream targets(CTGF and Cyr61). TNBC cells were transfected with Flag-YAP for the overexpression of YAP, and the role of YAP as a key target for HC to inhibit TNBC malignant progression was examined by CCK-8 assay, Transwell assay, and wound-healing assay. The pathway of HC-induced YAP degradation was detected by the co-treatment of proteasome inhibitor with HC and ubiquitination assay. The binding of HC to YAP and the E3 ubiquitin ligase Ccr4-not transcription complex subunit 4(CNOT4) was detected by microscale thermophoresis(MST) assay and drug affinity responsive target stability(DARTS) assay. The results showed that HC significantly inhibited the proliferation, colony formation, invasion, and EMT of TNBC cells. HC down-regulated the protein and mRNA levels of CTGF and Cyr61. HC down-regulated the total protein level of YAP, while it had no effect on the mRNA level of YAP. The overexpression of YAP antagonized the inhibitory effects of HC on the proliferation, migration, and invasion of TNBC cells. HC promoted the degradation of YAP through the proteasome pathway and up-regulated the ubiquitination level of YAP. The results of MST and DARTS demonstrated direct binding between HC, YAP, and CNOT4. The above results indicated that HC inhibited the malignant progression of TNBC via CNOT4-mediated degradation and ubiquitination of YAP.
Humans
;
Triple Negative Breast Neoplasms/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Movement
;
Ubiquitination
;
RNA, Messenger/metabolism*
;
Epithelial-Mesenchymal Transition
;
Transcription Factors/metabolism*
4.High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast.
Dawei XIE ; Zheng WANG ; Beibei SUN ; Liwei QU ; Musheng ZENG ; Lin FENG ; Mingzhou GUO ; Guizhen WANG ; Jihui HAO ; Guangbiao ZHOU
Frontiers of Medicine 2023;17(5):907-923
The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
Female
;
Humans
;
Alternative Splicing
;
Breast Neoplasms/metabolism*
;
Carcinoma, Pancreatic Ductal/pathology*
;
Focal Adhesion Protein-Tyrosine Kinases/therapeutic use*
;
Nerve Tissue Proteins/genetics*
;
Neuroendocrine Tumors/genetics*
;
Oncogenes
;
Pancreatic Neoplasms/metabolism*
5.Effects of adjuvant trastuzumab on long-term survival of T1N0M0 stage human epidermal growth factor receptor 2 positive breast cancer: a real-world study.
Tong Hui SUN ; Zi Nan LU ; Hai Tao SONG ; Gang SUN
Chinese Journal of Oncology 2023;45(1):101-107
Objective: To investigate the prognosis impact of adjuvant trastuzumab treatment on human epidermal growth factor receptor 2 (HER-2) positive early breast cancer patients. Methods: A retrospective study was conducted, HER-2-positive T1N0M0 stage breast cancer patients who underwent surgery in the Affiliated Tumor Hospital of Xinjiang Medical University from January 2010 to December 2019 were divided into treatment group and control group according to whether they were treated with trastuzumab or not. Propensity score matching (PSM) was used to balance the confounding bias caused by differences in baseline characteristics between the two groups. Cox proportional hazards model was used to analyze the risk factors affecting disease-free survival (DFS). The Kaplan-Meier method was used to estimate the 3- and 5-year DFS and overall survival (OS) rates of the two groups before and after PSM. Results: There were 291 patients with HER-2 positive T1N0M0 stage breast cancer, including 21 cases in T1a (7.2%), 61 cases in T1b (21.0%), and 209 cases in T1c (71.8%). Before PSM, there were 132 cases in the treatment group and 159 cases in the control group, the 5-year DFS rate was 88.5%, and the 5-year OS rate was 91.5%. After PSM, there were 103 cases in the treatment group and 103 cases in the control group, the 5-year DFS rate was 86.0%, and the 5-year OS rate was 88.5%. Before PSM, there were significant differences in tumor size, histological grade, vascular invasion, Ki-67 index, postoperative chemotherapy or not and radiotherapy between the treatment group and the control group (P<0.05). After PSM, there were no significant difference in clinicopathological features between the treatment group and the control group (P>0.05). Multivariate analysis showed that histological grade (HR=2.927, 95 CI: 1.476, 5.805; P=0.002), vascular invasion (HR=3.410, 95 CI: 1.170, 9.940; P=0.025), menstrual status (HR=3.692, 95 CI: 1.021, 13.344, P=0.046), and chemotherapy (HR=0.238, 95 CI: 0.079, 0.720; P=0.011) were independent factors affecting DFS. After PSM, the 5-year DFS rate of the treatment group was 89.2%, while that of the control group was 83.5%(P=0.237). The 5-year OS rate of the treatment group was 96.1%, while that of the control group was 84.7%(P=0.036). Conclusion: Postoperative targeted therapy with trastuzumab can reduce the risk of recurrence and metastasis in patients with HER-2-positive T1N0M0 stage breast cancer.
Humans
;
Female
;
Trastuzumab/therapeutic use*
;
Breast Neoplasms/metabolism*
;
Retrospective Studies
;
Neoplasm Staging
;
Chemotherapy, Adjuvant
;
Receptor, ErbB-2/metabolism*
;
Prognosis
;
Disease-Free Survival
6.Pathological features and immune microenvironment in HER-2 intratumoral heterogeneous breast cancers.
Yi Ling YANG ; Yuan Ming SONG ; Hui Qin XUE ; Hui SUN ; Ya Qing LI ; Xiao Long QIAN ; Jiao JIAO ; Kun Peng LI ; Heng ZHANG ; Xiao Jing GUO
Chinese Journal of Oncology 2023;45(2):165-169
Objective: To observe the clinical pathology features, and immune microenvironment of HER-2 intratumoral heterogeneity breast cancer. Methods: Thirty cases of HER-2 intratumoral heterogeneous breast cancer were retrospectively analyzed in Tianjin Medical University Cancer Institute and Hospital from November 2017 to June 2020. HER-2 expression was detected by immunohistochemistry and verified by dual color silver-enhanced in-situ hybridization (D-SISH). HER-2 intratumoral positive and negative regions were divided. The pathological characteristics, subtype, and the level of tumor infiltrating lymphocytes (TILs) and the expression of programmed cell death-ligand 1 (PD-L1) were evaluated respectively. Results: The proportion of HER-2 positive cells of the breast cancer ranged from 10% to 90%. The pathological type was mainly invasive non-special typecarcinoma. Six cases presented different pathological types between HER-2 positive and negative regions. The HER-2-positive areas included 2 cases of carcinoma with apocrine differentiation, and the negative areas included 2 cases of invasive micropapillary carcinoma, 1 case of invasive papillary carcinoma, and 1 case of carcinoma with apocrine differentiation. In HER-2 positive regions, 17 cases were Luminal B and 13 cases were HER-2 overexpressed types. There were 22 cases of Luminal B and 8 cases of triple negative tumors in the HER-2 negative areas. The levels of TILs in HER-2 positive and negative areas accounted for 53.3% (16/30) and 26.7% (8/30), respectively, with a statistically significant difference (P=0.035). The positive expression of PD-L1 in HER-2 positive area and HER-2 negative area were 6 cases and 9 cases, respectively. Among 8 cases with HER-2 negative regions containing triple negative components, 4 cases were positive for PD-L1 expression. Conclusions: In the case of HER-2 intratumoral heterogeneity, it is necessary to pay attention to both HER-2 positive and negative regions, and evaluate subtype separately as far as possible. For HER-2 intratumoral heterogeneous breast cancer containing triple negative components, the treatment mode can be optimized by refining the intratumoral expression of PD-L1.
Humans
;
Female
;
Breast Neoplasms/pathology*
;
Retrospective Studies
;
B7-H1 Antigen/metabolism*
;
Lymphocytes, Tumor-Infiltrating/pathology*
;
Carcinoma
;
Tumor Microenvironment
;
Triple Negative Breast Neoplasms/pathology*
;
Prognosis
;
Biomarkers, Tumor/metabolism*
7.Research Progress in Androgen Receptor and Triple Negative Breast Cancer.
Acta Academiae Medicinae Sinicae 2023;45(2):303-310
The research on androgen receptor (AR) in breast cancer is advancing.Although the prognostic value of AR in triple negative breast cancer (TNBC) is controversial,a variety of studies have demonstrated that the lack of AR expression exacerbates disease progression.Moreover,the TNBC subtype of AR(-) is more aggressive than that of AR(+) due to the lack of prognostic biomarkers and therapeutic targets.With the discovery and deepening research of novel therapeutic targets such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin and S-phase kinase-associated protein 2 signaling pathways,as well as the emerging of immunotherapies,the treatment options for TNBC are increasing.Regarding the role of AR in TNBC,the studies about the tumor biology of AR(-)TNBC and novel biomarkers for improved management of the disease remain insufficient.In this review,we summarize the research progress of AR in TNBC,put forward avenues for future research on TNBC,and propose potential biomarkers and therapeutic strategies that warrant investigation.
Humans
;
Triple Negative Breast Neoplasms/pathology*
;
Receptors, Androgen/metabolism*
;
Prognosis
;
Biomarkers
;
Signal Transduction
8.Stellera chamaejasme extract against multidrug resistance of breast cancer cell line MCF-7.
Xi-He CUI ; Rui ZENG ; Yuan-Long ZANG ; Qing YANG ; Xiao-Xin ZHU ; Ya-Jie WANG
China Journal of Chinese Materia Medica 2023;48(9):2360-2367
This study explored the effect and underlying mechanism of Stellera chamaejasme extract(SCE) on multidrug resistance of breast cancer. The chemotherapy-sensitive breast cancer cell line MCF-7 and adriamycin(ADR)-resistant cell line MCF-7/ADR were used as experimental subjects. MTT assay was used to detect cell proliferation activity. Pi staining was used to detect the cell cycle. 4',6-Diamidino-2-phenylindole, dihydrochloride(DAPI) staining and flow cytometry were used to detect apoptosis. Dansylcadaverine(MDC) staining and GFP-LC3B-Mcherry adenovirus transfection were used to detect autophagy. The protein expression of Bcl-2, Bax, caspase-9, caspase-3, LC3B, p62, and Beclin-1 was detected by Western blot. The results showed that SCE could significantly inhibit the proliferation of both sensitive and resistant breast cancer cell lines. The drug resistance factor was 0.53, which was significantly lower than 59 of ADR. Meanwhile, the proportion of sensitive/resistant cells in the G_0/G_1 phase increased significantly after SCE treatment. In addition, DAPI staining showed that a series of apoptosis phenomena such as nuclear pyknosis, staining deepening, and nuclear fragmentation appeared in sensitive/resistant cell lines after SCE administration. Moreover, the results of flow cytometry double staining showed that the proportion of apoptotic cells in sensitive/resistant cell lines increased significantly after SCE administration. Besides, Western blot showed that the protein expression levels of caspase-3, caspase-9, and Bcl-2 significantly decreased and the expression level of Bax protein significantly increased in both breast cancer cell lines after SCE administration. Furthermore, SCE could also increase the positive fluorescent spots after MDC staining and yellow fluorescent spots after GFP-LC3B-mcherry transfection, and up-regulate the expression levels of autophagy-related proteins LC3B-Ⅱ, p62, and Beclin-1 in breast cancer cells. In summary, SCE may play the role of anti-multidrug resistance by blocking the cell cycle of breast cancer multidrug-resistant cells, blocking autophagy flow, and ultimately interfering with the apoptosis resistance of drug-resistant cells.
Humans
;
Female
;
Breast Neoplasms/metabolism*
;
MCF-7 Cells
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Beclin-1/pharmacology*
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm
;
Cell Proliferation
9.Infiltration and significance of M1 macrophage in breast cancer: an analysis of METABRIC database and clinical validation.
Hui Zi LEI ; Pei YUAN ; Jia JIA ; Chang Yuan GUO ; Bing Ning WANG ; Lei GUO ; Jian Ming YING
Chinese Journal of Oncology 2023;45(5):410-414
Objective: To investigate the differences of immune microenvironment between stage T1N3 and stage T3N0 breast cancer patients and explore the relationship between M1 macrophage infiltration and lymph node metastasis in breast cancer. Methods: Clinical information and RNA-sequencing (RNA-Seq) expression data of stage T1N3 (n=9) and stage T3N0 (n=11) breast cancer patients were extracted from Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases. Using CIBERSORT, the proportions of 22 types of immune cells were calculated, and then the differences of immune cell infiltration between stage T1N3 and T3N0 patients were compared. From 2011 to 2022, pathologic specimens were collected from breast cancer patients who underwent curative resection at the Cancer Hospital, Chinese Academy of Medical Sciences, including 77 at stage T1N3 and 58 at stage T3N0.The METABRIC database analysis results were verified by examining the density of M1 macrophages in tissues using dual-staining immunohistochemistry. Results: METABRIC data analysis showed M1 macrophage was the highest proportion, 15.85% in stage T1N3 breast cancer; M2 macrophage was the highest proportion, 13.07% in stage T3N0 breast cancer.M1 macrophage proportions were statistically different between patients with stage T1N3 and stage T3N0 (P=0.010). The dual-staining immunohistochemistry analysis of breast cancer tissues showed M1 macrophage density (median) of 62.0 and 38.0 cells/mm(2) for stage T1N3 and T3N0, respectively. The difference was statistically significant (P=0.002). Conclusion: The density of M1 macrophages is notably higher in stage T1N3 patients and is associated with lymph node metastasis.
Humans
;
Female
;
Breast Neoplasms/pathology*
;
Lymphatic Metastasis/pathology*
;
Macrophages/metabolism*
;
Tumor Microenvironment
10.Silencing RAB27a inhibits proliferation, invasion and adhesion of triple-negative breast cancer cells.
Li WANG ; Zhirui YAN ; Yaoxiong XIA
Journal of Southern Medical University 2023;43(4):560-567
OBJECTIVE:
To investigate the effect of inhibition of RAB27 protein family, which plays a pivotal role in exosome secretion, on biological behaviors of triple-negative breast cancer cells.
METHODS:
Quantitative real-time PCR and Western blotting were used to examine the expressions of RAB27 family and exosome secretion in 3 triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and Hs578T) and a normal breast epithelial cell line (MCF10A). The effect of small interfering RNA (siRNA)-mediated silencing of RAB27a and RAB27b on exosome secretion in the 3 breast cancer cell lines was detected using Western blotting, and the changes in cell proliferation, invasion and adhesion were evaluated.
RESULTS:
Compared with normal breast epithelial cells, the 3 triple-negative breast cancer cell lines exhibited more active exosome secretion (P < 0.001) and showed significantly higher expressions of RAB27a and RAB27b at both the mRNA and protein levels (P < 0.01). Silencing of RAB27a in the breast cancer cells significantly down-regulated exosome secretion (P < 0.001), while silencing of RAB27b did not significantly affect exosome secretion. The 3 breast cancer cell lines with RAB27a silencing-induced down-regulation of exosome secretion showed obvious inhibition of proliferation, invasion and adhesion (P < 0.01) as compared with the cell lines with RAB27b silencing.
CONCLUSION
RAB27a plays central role in the exosome secretion in triple-negative breast cancer cells, and inhibiting RAB27a can inhibit the proliferation, invasion and adhesion of the cells.
Humans
;
rab GTP-Binding Proteins/metabolism*
;
Triple Negative Breast Neoplasms
;
Cell Line, Tumor
;
rab27 GTP-Binding Proteins/metabolism*
;
RNA, Small Interfering/genetics*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic

Result Analysis
Print
Save
E-mail