1.Hearing Loss in High-Risk Newborns: The Effectiveness of One-stage Hearing Screening in the Neonatal Intensive Care Unit of the Jose R. Reyes Memorial Medical Center.
Christine Joyce G ZAMBALES ; Elias T REALA
Philippine Journal of Otolaryngology Head and Neck Surgery 2025;40(1):9-14
Objective:To determine the effectiveness of a one-stage hearing screening protocol in detecting hearing loss in high risk newborns at the Neonatal Intensive Care Unit of the Jose R. Reyes Memorial Medical Center.
Methods:
Design:Cross-Sectional Study
Setting:Tertiary Government Training Hospital
Population:High-risk newborns admitted at the Neonatal Intensive Care Unit of the Jose R. Reyes Memorial Medical Center from March to December 2023 underwent a one stage universal newborn hearing screening protocol. Excluded from the study were patients who were admitted for less than 48 hours, without consent from their parents or guardians and babies who were not cleared medically to undergo testing, and those who presented with aural atresia and/or any physical anomaly of the head and the external ear.
Results:A total of 169 babies were initially seen with 16 babies lost to follow up resulting in a final total of 153 babies (or 306 ears) tested. The refer and false positive rates were 9.8% and 8.92%, respectively, on average comparable to or even better than the two-step protocol in most studies. Sensitivity was determined to be 100% while specificity was 91.08%. The incidence of hearing loss in the study population was 19.8/1000, consistent with various study outcomes for high risk newborns. There was no reported incidence of auditory neuropathy in this study. The primary risk factors that were present in babies with hearing loss were: low birth weight, prematurity, neonatal intensive care unit admission of more than 5 days and exposure to ototoxic medications.
Conclusion:The one-staged Automated Auditory Brainstem Response (AABR) is an effective and efficient newborn hearing screening protocol for high-risk newborns in the Neonatal Intensive Care Unit (NICU) setting and eventually, may be considered as an alternative hearing screening technique whenever available in this cohort. More studies about improving newborn hearing screening, cost-analysis, diagnostics and interventions of hearing loss should be pursued in implementation of the Universal Hearing Screening Law in the Philippines.
Human ; Male ; Female ; Infant Newborn: First 28 Days After Birth ; Newborn Screening ; Evoked Potentials ; Brain Stem ; Neonatal Intensive Care
2.Study on gene therapy for DPOAE and ABR threshold changes in adult Otof-/- mice.
Zijing WANG ; Qi CAO ; Shaowei HU ; Xintai FAN ; Jun LV ; Hui WANG ; Wuqing WANG ; Huawei LI ; Yilai SHU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):49-56
Objective:This study aims to analyze the threshold changes in distortion product otoacoustic emissions(DPOAE) and auditory brainstem response(ABR) in adult Otof-/- mice before and after gene therapy, evaluating its effectiveness and exploring methods for assessing hearing recovery post-treatment. Methods:At the age of 4 weeks, adult Otof-/- mice received an inner ear injection of a therapeutic agent containing intein-mediated recombination of the OTOF gene, delivered via dual AAV vectors through the round window membrane(RWM). Immunofluorescence staining assessed the proportion of inner ear hair cells with restored otoferlin expression and the number of synapses.Statistical analysis was performed to compare the DPOAE and ABR thresholds before and after the treatment. Results:AAV-PHP. eB demonstrates high transduction efficiency in inner ear hair cells. The therapeutic regimen corrected hearing loss in adult Otof-/- mice without impacting auditory function in wild-type mice. The changes in DPOAE and ABR thresholds after gene therapy are significantly correlated at 16 kHz. Post-treatment,a slight increase in DPOAE was observeds,followed by a recovery trend at 2 months post-treatment. Conclusion:Gene therapy significantly restored hearing in adult Otof-/- mice, though the surgical delivery may cause transient hearing damage. Precise and gentle surgical techniques are essential to maximize gene therapy's efficacy.
Mice
;
Animals
;
Otoacoustic Emissions, Spontaneous/physiology*
;
Hearing/physiology*
;
Ear, Inner
;
Hearing Loss/therapy*
;
Genetic Therapy
;
Auditory Threshold/physiology*
;
Evoked Potentials, Auditory, Brain Stem/physiology*
;
Membrane Proteins
3.The impact of amygdala glutamate receptors on cardiovascular function in rats with post-traumatic stress disorder.
Ya-Yang WU ; Kun-Yi CAI ; Yu-Jie WU ; Chao ZHENG ; Meng-Ya WANG ; Huan-Huan ZHANG
Acta Physiologica Sinica 2023;75(5):611-622
Post-traumatic stress disorder (PTSD) has been reported to be associated with a higher risk of cardiovascular disease. The amygdala may have an important role in regulating cardiovascular function. This study aims to explore the effect of amygdala glutamate receptors (GluRs) on cardiovascular activity in a rat model of PTSD. A compound stress method combining electrical stimulation and single prolonged stress was used to prepare the PTSD model, and the difference of weight gain before and after modeling and the elevated plus maze were used to assess the PTSD model. In addition, the distribution of retrogradely labeled neurons was observed using the FluoroGold (FG) retrograde tracking technique. Western blot was used to analyze the changes of amygdala GluRs content. To further investigate the effects, artificial cerebrospinal fluid (ACSF), non-selective GluR blocker kynurenic acid (KYN) and AMPA receptor blocker CNQX were microinjected into the central nucleus of the amygdala (CeA) in the PTSD rats, respectively. The changes in various indices following the injection were observed using in vivo multi-channel synchronous recording technology. The results indicated that, compared with the control group, the PTSD group exhibited significantly lower weight gain (P < 0.01) and significantly decreased ratio of open arm time (OT%) (P < 0.05). Retrograde labeling of neurons was observed in the CeA after microinjection of 0.5 µL FG in the rostral ventrolateral medulla (RVLM). The content of AMPA receptor in the PTSD group was lower than that in the control group (P < 0.05), while there was no significant differences in RVLM neuron firing frequency and heart rate (P > 0.05) following ACSF injection. However, increases in RVLM neuron firing frequency and heart rate were observed after the injection of KYN or CNQX into the CeA (P < 0.05) in the PTSD group. These findings suggest that AMPA receptors in the amygdala are engaged in the regulation of cardiovascular activity in PTSD rats, possibly by acting on inhibitory pathways.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Stress Disorders, Post-Traumatic
;
Receptors, AMPA
;
6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology*
;
Receptors, Glutamate/metabolism*
;
Amygdala
;
Weight Gain
;
Medulla Oblongata/physiology*
;
Blood Pressure
4.Endoscopic botulinum toxin injection combined with balloon dilatation for treatment of cricopharyngeal achalasia in patient with brainstem stroke.
Chao LIU ; Yuan LI ; Zhi TAN ; Hua LIU ; Meiyun ZHOU ; Jie LI ; Junjun LIANG ; Le XIAO
Journal of Central South University(Medical Sciences) 2023;48(8):1203-1209
OBJECTIVES:
At present, there are many reports about the treatment of cricopharyngeal achalasia by injecting botulinum toxin type A (BTX-A) into cricopharyngeal muscle guided by ultrasound, electromyography or CT in China, but there is no report about injecting BTX-A into cricopharyngeal muscle guided by endoscope. This study aims to evaluate the efficacy of endoscopic BTX-A injection combined with balloon dilatation in the treatment of cricopharyngeal achalasia after brainstem stroke, and to provide a better method for the treatment of dysphagia after brainstem stroke.
METHODS:
From June to December 2022, 30 patients with cricopharyngeal achalasia due to brainstem stroke were selected from the Department of Rehabilitation Medicine, the First Hospital of Changsha. They were randomly assigned into a control group and a combined group, 15 patients in each group. Patients in both groups were treated with routine rehabilitation therapy, while patients in the control group were treated with balloon dilatation, and patients in the combined group were treated with balloon dilatation and BTX-A injection. Before treatment and after 2 weeks of treatment, the patients were examined by video fluoroscopic swallowing study, Penetration-aspiration Scale (PAS), Dysphagia Outcome Severity Scale (DOSS), and Functional Oral Intake Scale (FOIS) were used to assess the swallowing function.
RESULTS:
In the combined group, 1 patient withdrew from the treatment because of personal reasons. Two weeks after treatment, the scores of DOSS, PAS, and FOIS in both groups were better than those before treatment (all P<0.01), and the combined group was better than the control group (all P<0.001). The effective rate was 85.7% in the combined group and 66.7% in the control group, with no significant difference between the 2 groups (P>0.05).
CONCLUSIONS
BTX-A injection combined with balloon dilatation is more effective than balloon dilatation alone in improving swallowing function and is worthy of clinical application.
Humans
;
Deglutition Disorders/therapy*
;
Esophageal Achalasia/drug therapy*
;
Dilatation/adverse effects*
;
Botulinum Toxins, Type A/therapeutic use*
;
Brain Stem Infarctions/drug therapy*
;
Treatment Outcome
5.Advances and Applications of Brain Organoids.
Yang LI ; Peng-Ming ZENG ; Jian WU ; Zhen-Ge LUO
Neuroscience Bulletin 2023;39(11):1703-1716
Understanding the fundamental processes of human brain development and diseases is of great importance for our health. However, existing research models such as non-human primate and mouse models remain limited due to their developmental discrepancies compared with humans. Over the past years, an emerging model, the "brain organoid" integrated from human pluripotent stem cells, has been developed to mimic developmental processes of the human brain and disease-associated phenotypes to some extent, making it possible to better understand the complex structures and functions of the human brain. In this review, we summarize recent advances in brain organoid technologies and their applications in brain development and diseases, including neurodevelopmental, neurodegenerative, psychiatric diseases, and brain tumors. Finally, we also discuss current limitations and the potential of brain organoids.
Animals
;
Mice
;
Humans
;
Induced Pluripotent Stem Cells
;
Brain/pathology*
;
Disease Models, Animal
;
Neurodegenerative Diseases/pathology*
;
Organoids/pathology*
6.Effects of moxibustion on serum levels of β-EP, SP and expression of IL-1β and COX-2 protein in brainstem in rats with migraine.
Wei-Xing FENG ; Xiao-Xiao DU ; Jia-Ni HE ; Hui ZHANG ; Xue XIONG ; Qiang WANG ; Dou WANG
Chinese Acupuncture & Moxibustion 2023;43(2):186-190
OBJECTIVE:
To observe the effects of moxibustion at "Baihui" (GV 20) and "Dazhui" (GV 14) at different time points on the serum level of β-endorphin (β-EP), substance P (SP) and expression of interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) protein in brainstem in rats with migraine, and to explore the effect and mechanism of moxibustion in preventing and treating migraine.
METHODS:
Forty male SD rats were randomly divided into a blank group, a model group, a prevention+treatment (PT) group and a treatment group, 10 rats in each group. Except the blank group, the rats in the remaining groups were injected with nitroglycerin subcutaneously to prepare migraine model. The rats in the PT group were treated with moxibustion 7 days before modeling (once a day) and 30 min after modeling, while the rats in the treatment group were treated with moxibustion 30 min after modeling. The "Baihui" (GV 20) and "Dazhui" (GV 14) were taken for 30 minutes each time. The behavioral scores in each group were observed before and after modeling. After intervention, ELISA method was used to detect the serum level of β-EP and SP; the immunohistochemistry method was used to detect the number of positive cells of IL-1β in brainstem; the Western blot method was used to detect the expression of COX-2 protein in brainstem.
RESULTS:
Compared with the blank group, the behavioral scores in the model group were increased 0-30 min, 60-90 min and 90-120 min after modeling (P<0.01); compared with the model group, in the treatment group and the PT group, the behavioral scores were decreased 60-90 min and 90-120 min after modeling (P<0.01). Compared with the blank group, in the model group, the serum level of β-EP was decreased (P<0.01), while the serum level of SP, the number of positive cells of IL-1β in brainstem and the expression of COX-2 protein were increased (P<0.01). Compared with the model group, in the PT group and and the treatment group, the serum level of β-EP was increased (P<0.01), while the serum level of SP, the number of positive cells of IL-1β and the expression of COX-2 protein in brainstem were decreased (P<0.01, P<0.05). Compared with the treatment group, in the PT group, the serum level of β-EP was increased and COX-2 protein expression was decreased (P<0.05).
CONCLUSION
Moxibustion could effectively relieve migraine. The mechanism may be related to reduce the serum level of SP, IL-1β and COX-2 protein expression in brainstem, and increase the serum level of β-EP, and the optimal effect is observed in the PT group.
Rats
;
Male
;
Animals
;
Moxibustion
;
Rats, Sprague-Dawley
;
Cyclooxygenase 2
;
beta-Endorphin
;
Substance P
;
Interleukin-1beta
;
Migraine Disorders
;
Brain Stem
7.Application of cochlear nerve action potential monitoring in the resection of vestibular schwannomas.
Xiu Ying WANG ; Jun ZHANG ; Jiao CONG ; Qun WANG ; Ding ZHANG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(3):200-205
Objective: To investigate the application of cochlear nerve action potential (CNAP) monitoring in the resection of vestibular schwannoma, especially evaluating its significance for hearing preservation. Methods: From April 2018 to December 2021, 54 patients with vestibular schwannoma who underwent resection via retrosigmoid approach were collected in Chinese PLA General Hospital. Before surgery, all patients had effective hearing (AAO-HNS grade C or above). Brainstem auditory evoked potential (BAEP) combined with CNAP monitoring was performed during surgery. The CNAP monitoring was combined with continuous monitoring and cochlear nerve mapping. And patients were divided into hearing preservation group and non-preserved group according to postoperative AAO-HNS grade. SPSS 23.0 software was used to analyze the differences of CNAP and BEAP parameters between the two groups. Results: A total of 54 patients completed intraoperative monitoring and data collection, including 25 males (46.3%) and 29 females (53.7%), aged 27-71 years with an average age of 46.2 years. The maximum tumor diameter were (18.1±5.9) mm (range 10-34 mm). All tumors were totally removed with preserved facial nerve function (House-Brackmann grade I-II). The hearing preservation rate of 54 patients was 51.9% (28/54). During surgery, the V wave extraction rate of BAEP waveform was 85.2% (46/54) before tumor resection, 71.4% (20/28) in the hearing preservation group after tumor resection, and disappeared in the hearing preservation group (0/26). CNAP waveform was elicited in 54 patients during operation. Differences were found in the distribution of CNAP waveforms after tumor resection. The waveforms of the hearing-preserving group were triphasic and biphasic, while those in the non-preserving group were low-level and positive. For hearing preservation group, the amplitude of N1 wave after tumor resection was significantly higher than that before tumor resection[14.45(7.54, 33.85)μV vs 9.13(4.88, 23.35)μV, P=0.022]; However, for the non-preserved group, the amplitude of N1 wave after tumor resection was significantly lower than that before tumor resection [3.07(1.96, 4.60)μV vs 6.55(4.54, 9.71)μV, P=0.007]; After tumor resection, the amplitude was significantly higher than that of the unreserved group [14.45(7.54, 33.85)μV vs 3.07(1.96, 4.60)μV, P<0.001]. Conclusions: BAEP combined with CNAP monitoring is conducive to intraoperative hearing protection, and the application of cochlear nerve mapping can prompt the surgeon to avoid nerve injury. The waveform and N1 amplitude of CNAP after tumor resection have a certain value in predicting postoperative hearing preservation status.
Female
;
Male
;
Humans
;
Middle Aged
;
Neuroma, Acoustic/surgery*
;
Action Potentials
;
Evoked Potentials, Auditory, Brain Stem
;
Cochlea
;
Cochlear Nerve
8.The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities.
Qiyuan ZHUANG ; Hui YANG ; Ying MAO
Neuroscience Bulletin 2023;39(3):393-408
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Humans
;
Glioma/metabolism*
;
Neuroglia/metabolism*
;
Carcinogenesis/pathology*
;
Neural Stem Cells/metabolism*
;
Microglia/metabolism*
;
Brain Neoplasms/metabolism*
;
Tumor Microenvironment
9.Association of Glial Activation and α-Synuclein Pathology in Parkinson's Disease.
Rui WANG ; Haigang REN ; Elena KAZNACHEYEVA ; Xiaojun LU ; Guanghui WANG
Neuroscience Bulletin 2023;39(3):479-490
The accumulation of pathological α-synuclein (α-syn) in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson's disease (PD). Recently, the findings of prion-like transmission of α-syn pathology have expanded our understanding of the region-specific distribution of α-syn in PD patients. Accumulating evidence suggests that α-syn aggregates are released from neurons and endocytosed by glial cells, which contributes to the clearance of α-syn. However, the activation of glial cells by α-syn species produces pro-inflammatory factors that decrease the uptake of α-syn aggregates by glial cells and promote the transmission of α-syn between neurons, which promotes the spread of α-syn pathology. In this article, we provide an overview of current knowledge on the role of glia and α-syn pathology in PD pathogenesis, highlighting the relationships between glial responses and the spread of α-syn pathology.
Humans
;
Parkinson Disease/pathology*
;
alpha-Synuclein/metabolism*
;
Dopaminergic Neurons/metabolism*
;
Pars Compacta/metabolism*
10.Establishment and characterization of bone marrow mesenchymal stem cell lines stably synthesizing high-level dopamine.
Yang LIU ; Junyan CHANG ; Yue WANG ; Pan YANG ; Caiyun MA ; Gaofeng LIU ; Yu GUO ; Changqing LIU ; Chunjing WANG
Chinese Journal of Biotechnology 2023;39(4):1773-1788
A triple-transgenic (tyrosine hydroxylase/dopamine decarboxylase/GTP cyclohydrolase 1, TH/DDC/GCH1) bone marrow mesenchymal stem cell line (BMSCs) capable of stably synthesizing dopamine (DA) transmitters were established to provide experimental evidence for the clinical treatment of Parkinson's disease (PD) by using this cell line. The DA-BMSCs cell line that could stably synthesize and secrete DA transmitters was established by using the triple transgenic recombinant lentivirus. The triple transgenes (TH/DDC/GCH1) expression in DA-BMSCs was detected using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. Moreover, the secretion of DA was tested by enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC). Chromosome G-banding analysis was used to detect the genetic stability of DA-BMSCs. Subsequently, the DA-BMSCs were stereotactically transplanted into the right medial forebrain bundle (MFB) of Parkinson's rat models to detect their survival and differentiation in the intracerebral microenvironment of PD rats. Apomorphine (APO)-induced rotation test was used to detect the improvement of motor dysfunction in PD rat models with cell transplantation. The TH, DDC and GCH1 were expressed stably and efficiently in the DA-BMSCs cell line, but not expressed in the normal rat BMSCs. The concentration of DA in the cell culture supernatant of the triple transgenic group (DA-BMSCs) and the LV-TH group was extremely significantly higher than that of the standard BMSCs control group (P < 0.000 1). After passage, DA-BMSCs stably produced DA. Karyotype G-banding analysis showed that the vast majority of DA-BMSCs maintained normal diploid karyotypes (94.5%). Moreover, after 4 weeks of transplantation into the brain of PD rats, DA-BMSCs significantly improved the movement disorder of PD rat models, survived in a large amount in the brain microenvironment, differentiated into TH-positive and GFAP-positive cells, and upregulated the DA level in the injured area of the brain. The triple-transgenic DA-BMSCs cell line that stably produced DA, survived in large numbers, and differentiated in the rat brain was successfully established, laying a foundation for the treatment of PD using engineered culture and transplantation of DA-BMSCs.
Rats
;
Animals
;
Dopamine
;
Parkinson Disease/metabolism*
;
Mesenchymal Stem Cells/metabolism*
;
Cell Line
;
Brain/metabolism*
;
Cell Differentiation
;
Mesenchymal Stem Cell Transplantation


Result Analysis
Print
Save
E-mail