1.Analysis of the Electrophoretic Profiles of Prion Protein in Carcinous and Pericarcinous Lysates of Six Different Types of Cancers.
Wei WEI ; Yue Zhang WU ; Kang XIAO ; Guo Hui XU ; Yun Tao SONG ; Qi SHI ; Xiao Ping DONG
Biomedical and Environmental Sciences 2021;34(9):683-692
Objective:
To find the different electrophoretic profiles of prion protein in carcinous and individual pericarcinous tissues in lysates of gastric, colon, liver, lung, thyroid, and laryngeal cancers.
Methods:
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot were used to test the amounts and electrophoretic patterns of total PrP and the tolerance of PK (protease K) digestion among six various cancer tissue types.
Results:
A mass of PrP signals with a large molecular weight were identified in the homogenates of peripheral tissues. The amounts and electrophoretic patterns of total PrP did not differ significantly between carcinous and pericarcinous tissues. PrPs in all types of the tested cancer samples were PK sensitive but showed diversity in the tolerance of PK digestion among various tissue types.
Conclusions
The study revealed that the included electrophoretic patterns of carcinous and pericarcinous tissues were almost similar. Unlike PrP-specific immunohistochemical assay, evaluation of PrP electrophoretic patterns in the peripheral organs and tissues by Western blot does not reflect tumor malignancy.
Animals
;
Blotting, Western
;
Brain
;
Brain Chemistry
;
Cricetinae
;
Electrophoresis, Polyacrylamide Gel
;
Humans
;
Neoplasms/chemistry*
;
Prion Proteins/analysis*
2.PINK1 and the related diseases.
Chinese Journal of Contemporary Pediatrics 2016;18(8):781-786
As a kind of mitochondrial membrane protein with protein kinase activity, phosphatase and tensin homolog deleted on chromosome ten induced kinase 1 (PINK1) is involved in many biological metabolic processes. Since PINK1 had been found to be associated with Parkinson's disease, researchers have been exploring its biological function. PINK1 localizes in the outer mitochondrial membrane and regulates cell function through phosphorylating proteins. PINK1 is involved in mitochondrial function, mitochondrial morphology and mitochondrial autophagy, but the regulatory pathway is not yet clear. PINK1 is expressed widely in many tissues with a variety of biological activity, especially in tissues with high energy consumption. It may therefore be involved in the development and regulation of many diseases. Mutations in PINK1 were originally discovered to cause autosomal recessive Parkinson's disease. Recently some research has revealed that PINK1 is related to the development of neonatal hypoxic-ischemic encephalopathy, cancer, diabetes and other diseases. Studying and exploring the biological functions of PINK1 will facilitate the identification of the targets for therapeutic intervention for its related diseases. This review article mainly focuses on recent studies about the biological function and related diseases of PINK1.
Autophagy
;
Diabetes Mellitus, Type 2
;
etiology
;
Humans
;
Hypoxia-Ischemia, Brain
;
etiology
;
Mitochondria
;
physiology
;
Neoplasms
;
etiology
;
Protein Kinases
;
chemistry
;
physiology
3.Research progress of lactoferrin as drug carriers.
Hui-xian TANG ; Zhen-hai ZHANG ; Zhi-ying ZHAO ; Hui-xia LÜ
Acta Pharmaceutica Sinica 2015;50(6):675-681
Lactoferrin (Lf) is one of the food protein belonged to the innate immune system. Apart from its main biological function of binding and transport of iron ions, lactoferrin also has many other functions and properties such as antibacterial, antiviral, antiparasitic, catalytic, anti-cancer, anti-allergic and radioprotecting. Lf is usually used as additives of food and cosmetics. The research of lactoferrin has been increasingly reported, and the application of lactoferrin as a drug carrier has drawn extensive attention over the recent year. In this paper, researches of lactoferrin as drug carriers are classified and summarized in brain targeting, liver tumor targeting, lung tumor targeting and oral delivery systems according to their different characteristics.
Administration, Oral
;
Brain
;
Drug Carriers
;
Humans
;
Lactoferrin
;
chemistry
;
Neoplasms
4.Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques.
Geon Ho JAHNG ; Ka Loh LI ; Leif OSTERGAARD ; Fernando CALAMANTE
Korean Journal of Radiology 2014;15(5):554-577
Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI.
Arteries/chemistry
;
Brain Neoplasms/radiography
;
Contrast Media/diagnostic use
;
Humans
;
Magnetic Resonance Imaging/standards/*trends
;
Spin Labels
;
Stroke/radiography
5.Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma.
Shuanglin DENG ; Shan ZHU ; Yuan QIAO ; Yong-Jun LIU ; Wei CHEN ; Gang ZHAO ; Jingtao CHEN
Protein & Cell 2014;5(12):899-911
Gliomas are extremely aggressive brain tumors with a very poor prognosis. One of the more promising strategies for the treatment of human gliomas is targeted immunotherapy where antigens that are unique to the tumors are exploited to generate vaccines. The approach, however, is complicated by the fact that human gliomas escape immune surveillance by creating an immune suppressed microenvironment. In order to oppose the glioma imposed immune suppression, molecules and pathways involved in immune cell maturation, expansion, and migration are under intensive clinical investigation as adjuvant therapy. Toll-like receptors (TLRs) mediate many of these functions in immune cell types, and TLR agonists, thus, are currently primary candidate molecules to be used as important adjuvants in a variety of cancers. In animal models for glioma, TLR agonists have exhibited antitumor properties by facilitating antigen presentation and stimulating innate and adaptive immunity. In clinical trials, several TLR agonists have achieved survival benefit, and many more trials are recruiting or ongoing. However, a second complicating factor is that TLRs are also expressed on cancer cells where they can participate instead in a variety of tumor promoting activities including cell growth, proliferation, invasion, migration, and even stem cell maintenance. TLR agonists can, therefore, possibly play dual roles in tumor biology. Here, how TLRs and TLR agonists function in glioma biology and in anti-glioma therapies is summarized in an effort to provide a current picture of the sophisticated relationship of glioma with the immune system and the implications for immunotherapy.
Animals
;
Antigens, Neoplasm
;
chemistry
;
immunology
;
Antineoplastic Agents
;
chemistry
;
immunology
;
therapeutic use
;
Brain Neoplasms
;
genetics
;
immunology
;
pathology
;
therapy
;
Chemotherapy, Adjuvant
;
Clinical Trials as Topic
;
Disease Models, Animal
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
immunology
;
Glioma
;
genetics
;
immunology
;
pathology
;
therapy
;
Humans
;
Immunotherapy
;
methods
;
Signal Transduction
;
Toll-Like Receptors
;
agonists
;
genetics
;
immunology
6.Application of 31P MR Spectroscopy to the Brain Tumors.
Dong Ho HA ; Sunseob CHOI ; Jong Young OH ; Seong Kuk YOON ; Myong Jin KANG ; Ki Uk KIM
Korean Journal of Radiology 2013;14(3):477-486
OBJECTIVE: To evaluate the clinical feasibility and obtain useful parameters of 31P magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. MATERIALS AND METHODS: Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. RESULTS: The brain tumors had a tendency of alkalization (pH = 7.28 +/- 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 +/- 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p = 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p < 0.05). The astrocytoma showed an increased PME/PDE and PME/PCr ratio. The ratios of PDE/Pi, PME/PCr, and PDE/PCr in lymphoma group were lower than those in the control group and astrocytoma group. The metastasis group showed an increased PME/PDE ratio, compared with that in the normal control group. CONCLUSION: We have obtained the clinically applicable 31P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Astrocytoma/diagnosis/*metabolism
;
Brain Abscess/diagnosis/*metabolism
;
*Brain Chemistry
;
Brain Neoplasms/diagnosis/*metabolism/secondary
;
Case-Control Studies
;
Diagnosis, Differential
;
Feasibility Studies
;
Female
;
Humans
;
Hydrogen-Ion Concentration
;
Lymphoma/diagnosis/*metabolism
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy/*methods
;
Male
;
Middle Aged
;
Phosphorus/diagnostic use
;
Prospective Studies
;
Young Adult
7.Inhibitory effect of folic acid/polyamide-amine as a miR-7 vector on the growth of glioma in mice.
Xiao-zhi LIU ; Zhi-guo SU ; Zhong-min JIANG ; Gang LI ; Jun SONG ; Kai HUANG ; Liang WANG ; Lei CHEN ; Zhen-lin LIU
Chinese Journal of Oncology 2012;34(5):325-330
OBJECTIVETo explore if folic acid/polyamide-amine (FA/PAMAM) enhances the therapeutic effect of miR-7gene therapy for glioma in vivo.
METHODSThe miR-7 gene was transfected into U251 glioma cells by FA/PAMAM. The efficiency of gene transfection was assessed by fluorescence microscopy. The miR-7 level was detect by quantitative RT-PCR. Intracranial glioma models were established in thymectomized mice, and FA/PAMAM nanoparticles were transplanted into the tumors in situ 3 days later. The animal survival was recorded and the gross tumor volume and degree of edema were observed by MRI. Apoptosis in the glioma cells and expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) were assessed by immunohistochemistry, and EGFR and AKT-2 protein expression was detected by Western blot assay.
RESULTSCompared with the liposomes, the FA/PAMAM nanoparticles were more efficient to transfer miR-7 gene into U251 glioma cells, MRI showed that the tumor growth was much slower in the FA/PAMAM/miR-7 group, and the animal survival time was longer. The apoptosis rate was (5.3 ± 0.9)% in the control group, (11.4 ± 2.4)% in the liposome/miR-7 group, and (17.7 ± 3.7)% in the FA/PAMAM/miR-7 group. The immunohistochemical assay showed that the levels of PCNA, MMP-2 and MMP-9 protein in the FA/PAMAM/miR-7 group were (34.6 ± 5.4)%, (24.5 ± 4.1)%, (25.4 ± 5.1)%, respectively, significantly lower than those in the liposome/miR-7 group (49.3 ± 5.9)%, (31.7 ± 7.1)% and (39.4 ± 6.4)%, respectively, and those in the control group (57.3 ± 7.4)%, (45.4 ± 6.9)% and (55.1 ± 7.3)%, respectively (all P < 0.05). The expressions of EGFR and AKT-2 proteins were 1.09 ± 0.12 and 0.62 ± 0.10 in the control group, 0.63 ± 0.11 and 0.43 ± 0.07 in the liposome/miR-7 group, and significantly deceased (0.47 ± 0.09 and 0.31 ± 0.04, respectively) in the FA/PAMAM/miR-7 group (all P < 0.05).
CONCLUSIONCompared with the liposomes, FA/PAMAM can transfect miR-7 into glioma cells with a higher efficiency in vivo, makes a longer time of the drug action, and shows a certain inhibitory effect on the growth of glioma, therefore, might become a new drug targeting agent in gene therapy forglioma.
Animals ; Apoptosis ; Brain Neoplasms ; genetics ; metabolism ; pathology ; Cell Line, Tumor ; Dendrimers ; chemistry ; Folic Acid ; chemistry ; Genetic Therapy ; methods ; Glioma ; genetics ; metabolism ; pathology ; Humans ; Male ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Mice ; Mice, Nude ; MicroRNAs ; genetics ; metabolism ; Nanoparticles ; Neoplasm Transplantation ; Proliferating Cell Nuclear Antigen ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; Receptor, Epidermal Growth Factor ; metabolism ; Thymectomy ; Transfection
8.Neuronal stem cells in the central nervous system and in human diseases.
Protein & Cell 2012;3(4):262-270
The process of cortical expansion in the central nervous system is a key step of mammalian brain development to ensure its physiological function. Radial glial (RG) cells are a glial cell type contributing to this progress as intermediate neural progenitor cells responsible for an increase in the number of cortical neurons. In this review, we discuss the current understanding of RG cells during neurogenesis and provide further information on the mechanisms of neurodevelopmental diseases and stem cell-related brain tumorigenesis. Knowledge of neuronal stem cell and relative diseases will bridge benchmark research through translational studies to clinical therapeutic treatments of these diseases.
Biomarkers, Tumor
;
metabolism
;
Brain
;
growth & development
;
physiology
;
Brain Neoplasms
;
metabolism
;
pathology
;
therapy
;
Glioma
;
metabolism
;
pathology
;
therapy
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
chemistry
;
metabolism
;
Lissencephaly
;
metabolism
;
pathology
;
Microcephaly
;
metabolism
;
pathology
;
Neoplastic Stem Cells
;
cytology
;
metabolism
;
Neurogenesis
;
drug effects
;
Neuroglia
;
cytology
;
metabolism
;
Protein Kinase Inhibitors
;
chemistry
;
pharmacology
9.Update of secretagogin.
Chinese Journal of Pathology 2011;40(7):499-500
Alzheimer Disease
;
metabolism
;
Animals
;
Brain
;
metabolism
;
Calcium-Binding Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Gastrointestinal Tract
;
metabolism
;
Humans
;
Islets of Langerhans
;
metabolism
;
Neoplasms
;
metabolism
;
RNA, Messenger
;
metabolism
;
Secretagogins
;
Thyroid Gland
;
metabolism
10.Preparation of superparamagnetic paclitaxel nanoparticles from modified chitosan and their cytotoxicity against malignant brain glioma.
Ming ZHAO ; Anmin LI ; Jin CHANG ; Hanjie WANG ; Shuli LIANG ; Jiajing ZHANG ; Runmin YAN
Journal of Biomedical Engineering 2011;28(3):513-516
We synthesized the superparamagnetic paclitaxel nanoparticles from modified chitosan tangling around Fe3O4 ferrofluid and taxol, and observed the nanoparticles with transmission electronic microscopy (TEM). Then we evaluated the paramagnetism of the particles by vibration specimen magnetometer (VSM) and tested their cytotoxicity with flow cytometry (FCM). The prepared nanoparticle solution was black without any floccule or sediment and appeared transparent after diluted. The nanoparticles were spherical and dispersed in water with mean diameter of 15 nm under TEM and showed superparamagnetic character. FCM test showed the nanoparticles had significant toxic effects against malignant astrocytoma U251 cell lines, equal to taxol alone. These results showed that the superparamagnetic nanoparticle not only enhanced the solubility of paclitaxel in water, but also was superparamagnetic and cytotoxic, which make suitable tools for magnetic targeting chemotherapy of brain gliomas.
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Apoptosis
;
drug effects
;
Brain Neoplasms
;
pathology
;
Cell Line, Tumor
;
Chitosan
;
pharmacology
;
Drug Carriers
;
chemistry
;
Drug Compounding
;
methods
;
Ferric Compounds
;
Glioma
;
pathology
;
Humans
;
Magnetics
;
Metal Nanoparticles
;
chemistry
;
Nanoparticles
;
Paclitaxel
;
pharmacology

Result Analysis
Print
Save
E-mail