1.Research progress on pathogenesis of ischemic stroke and traditional Chinese medicine commonly used for treatment of ischemic stroke.
Jing-Bo ZHU ; Yong-Hua WANG ; Zhong-Dong HU ; Jun LI
China Journal of Chinese Materia Medica 2019;44(3):422-432
Stroke has become the second leading cause of death in the world, and the most common type is the ischemic stroke. Due to its rapid onset and complex conditions, ischemic stroke is a major neurological disorder that causes disability. Ischemic stroke mainly results from atherosclerosis, and the pathogenesis of ischemic stroke mainly includes energy metabolism disorders in the brain, the toxicity of excitatory amino acids, oxidative/nitrification stress, inflammatory response, apoptosis, and autophagy. With the characteristics of multi-component and multi-target, traditional Chinese medicine could be used to treat ischemic stroke at different stages. This article summarized the latest research progress on the pathogenesis of ischemic stroke and commonly used traditional Chinese medicine for treatment of ischemic stroke in order to provide references for the further research and clinical treatment of ischemic stroke.
Brain Ischemia
;
physiopathology
;
therapy
;
Humans
;
Medicine, Chinese Traditional
;
Research
;
Stroke
;
physiopathology
;
therapy
2.Buyang Huanwu Decoction ameliorates ischemic stroke by modulating multiple targets with multiple components: In vitro evidences.
Wei-Wei ZHANG ; Feng XU ; Ding WANG ; Jia YE ; Shao-Qing CAI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):194-202
Buyang Huanwu Decoction (BYHWD) is a well-known traditional Chinese medicine prescription which is used to treat ischaemic stroke and stroke-induced disabilities. However, the exact mechanism underlying BYHWD's amelioration of ischaemic stroke and its effective constituents remain unclear. The present study aimed to identify the effective constituents of BYHWD and to further explore its action mechanisms in the amelioration of ischaemic stroke by testing the activities of 15 absorbable chemical constituents of BYHWD with the same methods under the same conditions. The following actions of these 15 compounds were revealed: 1) Ferulic acid, calycosin, formononetin, astrapterocarpan-3-O-β-D-glucoside, paeonol, calycosin-7-O-β-D-glucoside, astraisoflavan-7-O-β-D-glucoside, ligustrazine, and propyl gallate significantly suppressed concanavalin A (Con A)-induced T lymphocyte proliferation; 2) Propyl gallate, calycosin-7-O-β-D-glucoside, paeonol, and ferulic acid markedly inhibited LPS-induced apoptosis in RAW264.7 cells; 3) Propyl gallate and formononetin significantly inhibited LPS-induced NO release; 4) Hydroxysafflor yellow A and inosine protected PC12 cells against the injuries caused by glutamate; and 5) Formononetin, astragaloside IV, astraisoflavan-7-O-β-D-glucoside, inosine, paeoniflorin, ononin, paeonol, propyl gallate, ligustrazine, and ferulic acid significantly suppressed the constriction of the thoracic aorta induced by KCl in rats. In conclusion, the results from the present study suggest that BYHWD exerts its ischaemic stroke ameliorating activities by modulating multiple targets with multiple components.
Animals
;
Apoptosis
;
drug effects
;
Brain Ischemia
;
drug therapy
;
physiopathology
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Glucosides
;
administration & dosage
;
analysis
;
Isoflavones
;
administration & dosage
;
analysis
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Monoterpenes
;
administration & dosage
;
analysis
;
PC12 Cells
;
RAW 264.7 Cells
;
Rats
;
Rats, Sprague-Dawley
;
Saponins
;
administration & dosage
;
analysis
;
Stroke
;
drug therapy
;
physiopathology
;
Triterpenes
;
administration & dosage
;
analysis
4.Clinics in diagnostic imaging (193). Sporadic Creutzfeldt-Jakob disease (sCJD).
Jun Si Yuan LI ; Kheng Choon LIM ; Winston Eng Hoe LIM ; Robert Chun CHEN
Singapore medical journal 2018;59(12):634-641
A 68-year-old man presented with a three-week history of rapidly progressive dementia, gait ataxia and myoclonus. Subsequent electroencephalography showed periodic sharp wave complexes, and cerebrospinal fluid assay revealed the presence of a 14-3-3 protein. A probable diagnosis of sporadic Creutzfeldt-Jakob disease was made, which was further supported by magnetic resonance (MR) imaging of the brain showing asymmetric signal abnormality in the cerebral cortices and basal ganglia. The aetiology, clinical features, diagnostic criteria, various MR imaging patterns and radiologic differential diagnosis of sporadic Creutzfeldt-Jakob disease are discussed in this article.
Aged
;
Brain
;
pathology
;
Cerebral Cortex
;
Cerebrospinal Fluid
;
metabolism
;
Creutzfeldt-Jakob Syndrome
;
diagnostic imaging
;
Dementia
;
physiopathology
;
Diagnosis, Differential
;
Diffusion Magnetic Resonance Imaging
;
Electroencephalography
;
Humans
;
Hypoxia-Ischemia, Brain
;
diagnostic imaging
;
Male
;
Prion Diseases
;
physiopathology
5.Effect of maximum blood pressure fluctuation on prognosis of patients with acute ischemic stroke within 24 hours after hospital admission.
H WANG ; Y TANG ; Y ZHANG ; K XU ; J B ZHAO
Chinese Journal of Epidemiology 2018;39(5):682-685
Objective: To investigate the relationship between the maximum blood pressure fluctuation within 24 hours after admission and the prognosis at discharge. Methods: The patients with ischemic stroke admitted in Department of Neurology of the First Affiliated Hospital of Harbin Medical University within 24 hours after onset were consecutively selected from April 2016 to March 2017. The patients were grouped according to the diagnostic criteria of hypertension. Ambulatory blood pressure of the patients within 24 hours after admission were measured with bedside monitors and baseline data were collected. The patients were scored by NIHSS at discharge. The relationships between the maximum values of systolic blood pressure (SBP) or diastolic blood pressure (DBP) and the prognosis at discharge were analyzed. Results: A total of 521 patients with acute ischemic stroke were enrolled. They were divided into normal blood pressure group (82 cases) and hypertension group(439 cases). In normal blood pressure group, the maximum values of SBP and DBP were all in normal distribution (P>0.05). The maximum value of SBP fluctuation was set at 146.6 mmHg. After adjustment for potential confounders, the OR for poor prognosis at discharge in patients with SBP fluctuation ≥146.6 mmHg was 2.669 (95%CI: 0.594-11.992) compared with those with SBP fluctuation <146.6 mmHg. The maximum value of DBP fluctuation was set at 90.0 mmHg, and the adjusted OR for poor prognosis at discharge in patients with DBP fluctuation ≥90.0 mmHg was 0.416 (95%CI: 0.087-1.992) compared with those with DBP fluctuation <90.0 mmHg. In hypertension group, the maximum values of SBP and DBP were not in normal distribution (P<0.05). The maximum value of SBP fluctuation was set at median 171.0 mmHg. After adjustment for the confounders, the greater the maximum of SBP, the greater the risk of poor prognosis at discharge was, the OR was 1.636 (95%CI: 1.014-2.641). The maximum value of DBP fluctuation was set at median 98.0 mmHg. After adjustment for the confounders, the greater the maximum of DBP, the greater the risk of poor prognosis at discharge was, the OR was 1.645 (95%CI: 1.003-2.697). Conclusion: In acute ischemic stroke patients with normal blood pressure at admission, the maximum values of SBP and DBP within 24 hours after admission had no relationship with prognosis at discharge. In acute ischemic stroke patients with hypertension at admission, the maximum values of SBP and DBP within 24 hours after admission were associated with poor prognosis at discharge.
Adult
;
Blood Pressure/physiology*
;
Blood Pressure Monitoring, Ambulatory
;
Brain Ischemia/physiopathology*
;
Hospitals
;
Humans
;
Hypertension/physiopathology*
;
Outcome Assessment, Health Care
;
Patient Admission
;
Patient Discharge
;
Prognosis
;
Risk
;
Stroke/physiopathology*
;
Time-to-Treatment
6.Role of mitophagy in neonatal rats with hypoxic-ischemic brain damage.
Ming-Xi LI ; Yi QU ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2017;19(2):242-249
OBJECTIVETo investigate mitophagy in an animal model of hypoxic-ischemic brain damage (HIBD) and its role in HIBD.
METHODSA total of 120 neonatal Sprague-Dawley rats aged 7 days were divided into three groups: sham-operation, HIBD, and autophagy inhibitor intervention (3MA group). The rats in the HIBD group were treated with right common carotid artery ligation and then put in a hypoxic chamber (8% oxygen and 92% nitrogen) for 2.5 hours. Those in the 3MA group were given ligation and hypoxic treatment at 30 minutes after intraperitoneal injection of 2 μL 3MA. Those in the sham-operation group were not given ligation or hypoxic treatment. Single cell suspension was obtained from all groups after model establishment. Immunofluorescence localization was performed for mitochondria labeled with MitoTracker, autophagosomes labeled with LysoTracker, and autophagy labeled with LC3 to observe mitophagy. After staining with the fluorescent probe JC-1, flow cytometry was used to measure mitochondrial membrane potential. TTC staining was used to measure infarct volume. Cytoplasmic proteins in cortical neurons were extracted, and Western blot was used to measure the expression of mitophagy-related proteins.
RESULTSCompared with the sham-operation group, the HIBD group had a significant reduction in mitochondrial membrane potential (P<0.05), a significant increase in mitophagy (P<0.05), a significant increase in the expression of the proteins associated with the division of the mitochondrial Drp1 and Fis1 (P<0.05), and a significant reduction in the expression of the mitochondrial outer membrane protein Tom20 and the mitochondrial inner membrane protein Tim23 (P<0.05). Compared with the HIBD group, the 3MA group had a significantly greater reduction in mitochondrial membrane potential (P<0.05), but showed significantly reduced mitophagy (P<0.05). In addition, the 3MA group had a significantly increased degree of cerebral infarction compared with the HIBD group (P<0.05).
CONCLUSIONSHIBD can increase the degree of mitophagy, and the inhibition of mitophagy can aggravate HIBD in neonatal rats.
Animals ; Animals, Newborn ; Female ; Hypoxia-Ischemia, Brain ; etiology ; physiopathology ; Male ; Mitochondrial Degradation ; physiology ; Rats ; Rats, Sprague-Dawley
7.Autophagy and hypoxic ischemic brain injuries.
Yong-Qiang LI ; Su FU ; Lai WANG ; Bin LIU ; Zhen-Yu SHI ; Jin-Bo DENG
Acta Physiologica Sinica 2017;69(3):316-324
Autophagy is a highly evolutionarily conserved physiological mechanism of organism, including several stages such as autophagosomes formation, the fusion of lysosomes and autophagosomes, and autophagosomes degradation. In physiological conditions, autophagy is responsible for clearing the spoiled organelles and long-lived proteins to maintain the homeostasis of cells and organism. Meanwhile, autophagy is also involved in the formation and development of diseases, but the mechanism has not been confirmed yet. The relationship between autophagy and hypoxic ischemic brain injuries represented by stroke is a research hotpot in recent years, but there is no clear conclusion about autophagy's role and mechanism in hypoxic ischemic brain injuries. We reviewed the activation, function and mechanism of autophagy in hypoxic ischemic brain injuries, in order to provide some perspectives on these researches.
Animals
;
Autophagy
;
Homeostasis
;
Humans
;
Hypoxia-Ischemia, Brain
;
physiopathology
;
Lysosomes
8.Multi-parameter arterial spin labeling versus dynamic magnetic-sensitive enhanced cerebral perfusion imaging for diagnosis of transient cerebral ischemic attack.
Yang XU ; Jin-Hao LV ; Lin MA ; Wei-Jun CHEN ; Xin LOU
Journal of Southern Medical University 2016;36(6):768-774
OBJECTIVETo evaluate the clinical value of three-dimensional pseudo-continuous arterial spin labeling (3D pCASL) perfusion magnetic resonance imaging (MRI) and dynamic susceptibility contrast (DSC) enhanced perfusion MRI in the diagnosis of transient ischemic attack (TIA).
METHODSThirty-nine consecutive patients with suspected TIA underwent multi-modal MRI scans including DSC, magnetic resonance angiography (MRA), diffusion-weighted imaging (DWI) and 3D pCASL (post-labeling delay, PLD=1.5 s and 2.5 s) within 24 h of symptom onset. Cerebral blood flow (CBF) from ASL and the time to the maximum of tissue residual function (Tmax) map from DSC were calculated using AW workstation. DWI and MRA were applied to detect acute cerebral infarction and intracranial artery stenosis. Two neuroradilogists who were blinded to the patients' clinical data assessed the presence of perfusion deficit, ischemic lesion and the lesion sites both from 1.5 s, 2.5 s PLD ASL-CBF and DSC-Tmax independently, and then graded them. The differences in the ranking grades between 1.5 s, 2.5 s PLD ASL and DSC were analyzed, and the frequency of lesion detection was compared between ASL-CBF, Tmax and MRA combining DWI method.
RESULTSNo significant differences was found in hypoperfusion grades detected by 3D pCASL (including PLD1.5 s and 2.5 s) CBF and Tmax maps, while significant differences were detected between 1.5 s PLD ASL-CBF and MRA combining DWI method; ASL with PLD 1.5 s CBF detected ischemic lesions and lesion site significantly more frequently than MRA combining DWI method.
CONCLUSIONs Three dimensional pCASL is a non-invasive perfusion method free of radiation exposure, and short PLD ASL is more sensitive than long PLD ASL for detecting ischemic lesions and lesion sites.
Arteries ; physiopathology ; Brain ; physiopathology ; Brain Infarction ; diagnosis ; Brain Ischemia ; diagnosis ; Cerebrovascular Circulation ; Diffusion Magnetic Resonance Imaging ; Humans ; Magnetic Resonance Angiography ; Perfusion ; Perfusion Imaging ; Spin Labels
9.Molecular Biological Roles of Oxidative Stress in Acute Brain Ischemia.
Xiang-yi KONG ; Jian GUAN ; Ren-zhi WANG
Acta Academiae Medicinae Sinicae 2016;38(2):222-227
The pathogenesis of acute brain ischemia is very complex, involving multiple mechanisms including excessive free radical generation. Oxidative stress means the imbalance between the generation and removal of free radicals. Once acute brain ischemia occurs, the reactive oxygen species interact with large numbers of biomacromolecules, irreversibly change or destroy the functions of cellular lipids, proteins, and nucleic acids, and thus initiate cell signaling pathways. However, the molecular biological characteristics of oxidative stress and the way to prevent and treat acute brain ischemia still need further investigations.
Brain Ischemia
;
metabolism
;
physiopathology
;
Humans
;
Oxidative Stress
;
Reactive Oxygen Species
;
metabolism
;
Signal Transduction
10.Impacts of Erythropoietin on Vascular Endothelial Growth Factor Receptor 2 by the Extracellular Signal-regulated Kinase Signaling Pathway in a Neonatal Rat Model of Periventricular White Matter Damage.
Qi-chao YUAN ; Li JIANG ; Li-hua ZHU ; Da-fan YU
Acta Academiae Medicinae Sinicae 2016;38(2):217-221
OBJECTIVETo explore the impacts of erythropoietin on vascular endothelial growth factor receptor 2 (VEGFR2) by the extracellular signal-regulated kinase (ERK) signaling pathway in a neonatal rat model of periventricular white matter damage.
METHODSAll of postnatal day 4 rats were randomized into three groups: the sham group [without hypoxia-ischemia (HI)], the HI group (HI with saline administration), and the erythropoietin (EPO) group [HI with recombinant human erythropoietin (rh-EPO) administration]. Rat pups underwent permanent ligation of the right common carotid artery, followed by 6% O2 for 2 hours or sham operation and normoxic exposure. Immediately after the HI, rats received a single intraventricular injection of rh-EPO (0.6 IU/g body mass) or saline. ERK and phosphorylation-ERK were examined at 60 minutes and 90 minutes after operation, and VEGFR2 were detected at 2 and 4 days after operation by using Western blot.
RESULTSAt 60 minutes and 90 minutes after operation, the proteins of phosphorylation-ERK were significantly higher in HI rats than in the sham rats and significantly higher in HI+EPO rats than in the HI rats (P<0.05). Two days after operation, VEGFR2 was not significantly different between sham and HI rats. However, the proteins of VEGFR2 were increased after administration of rh-EPO (P<0.05). Four days after operation, the proteins of VEGFR2 were significantly higher in HI rats than in the sham rats and significantly higher in HI+EPO rats than in the HI rats (P<0.05).
CONCLUSIONEPO may regulate VEGFR2 expression by affecting the intracranial ERK signaling pathways.
Animals ; Animals, Newborn ; Disease Models, Animal ; Erythropoietin ; pharmacology ; Humans ; Hypoxia-Ischemia, Brain ; physiopathology ; MAP Kinase Signaling System ; Phosphorylation ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins ; pharmacology ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism ; White Matter ; physiopathology

Result Analysis
Print
Save
E-mail