1.Comparison of the predictive value of the Helsinki, Rotterdam, and Stockholm CT scores in predicting 6-month outcomes in patients with blunt traumatic brain injuries.
Nushin Moussavi BIUKI ; Hamid Reza TALARI ; Mohammad Hossein TABATABAEI ; Masoumeh ABEDZADEH-KALAHROUDI ; Hossein AKBARI ; Mahsa Masjedi ESFAHANI ; Reihaneh FAGHIHI
Chinese Journal of Traumatology 2023;26(6):357-362
PURPOSE:
Despite advances in modern medicine, traumatic brain injuries (TBIs) are still a major medical problem. Early diagnosis of TBI is crucial for clinical decision-making and prognosis. This study aims to compare the predictive value of Helsinki, Rotterdam, and Stockholm CT scores in predicting the 6-month outcomes in blunt TBI patients.
METHODS:
This cohort study was conducted on blunt TBI patients of 15 years or older. All of them were admitted to the surgical emergency department of Shahid Beheshti Hospital in Kashan, Iran from 2020 to 2021 and had abnormal trauma-related findings on brain CT images. The patients' demographic data such as age, gender, history of comorbid conditions, mechanism of trauma, Glasgow coma scale, CT images, length of hospital stay, and surgical procedures were recorded. The Helsinki, Rotterdam, and Stockholm CT scores were simultaneously determined according to the existing guidelines. The included patients' 6-month outcome was determined using the Glasgow outcome scale extended. M Data were analyzed by SPSS software version 16.0. Sensitivity, specificity, negative/positive predictive value and the area under the receiver operating characteristic curve were calculated for each test. The Kappa agreement coefficient and Kuder Richardson-20 were used to compare the scoring systems.
RESULTS:
Altogether 171 TBI patients met the inclusion and exclusion criteria, with the mean age of (44.9 ± 20.2) years. Most patients were male (80.7%), had traffic related injuries (83.1%) and mild TBIs (64.3%). Patients with lower Glasgow coma scale had higher Helsinki, Rotterdam, and Stockholm CT scores and lower Glasgow outcome scale extended scores. Among all the scoring systems, the Helsinki and Stockholm scores showed the highest agreement in predicting patients' outcomes (kappa = 0.657, p < 0.001). The Rotterdam scoring system had the highest sensitivity (90.1%) in predicting death of TBI patients, whereas the Helsinki scoring system had the highest sensitivity (89.8%) in predicting the 6-month outcome in TBI patients.
CONCLUSION
The Rotterdam scoring system was superior in predicting death in TBI patients, whereas the Helsinki scoring system was more sensitive in predicting the 6-month outcome.
Humans
;
Male
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Female
;
Cohort Studies
;
Tomography, X-Ray Computed/methods*
;
Brain Injuries, Traumatic/diagnosis*
;
Brain Injuries
;
Prognosis
;
Glasgow Coma Scale
;
Wounds, Nonpenetrating/diagnostic imaging*
;
Brain
2.A novel method for electroencephalography background analysis in neonates with hypoxic-ischemic encephalopathy.
Xiu-Ying FANG ; Yi-Li TIAN ; Shu-Yuan CHEN ; Quan SHI ; Duo ZHENG ; Ying-Jie WANG ; Jian MAO
Chinese Journal of Contemporary Pediatrics 2023;25(2):128-134
OBJECTIVES:
To explore a new method for electroencephalography (EEG) background analysis in neonates with hypoxic-ischemic encephalopathy (HIE) and its relationship with clinical grading and head magnetic resonance imaging (MRI) grading.
METHODS:
A retrospective analysis was performed for the video electroencephalography (vEEG) and amplitude-integrated electroencephalography (aEEG) monitoring data within 24 hours after birth of neonates diagnosed with HIE from January 2016 to August 2022. All items of EEG background analysis were enrolled into an assessment system and were scored according to severity to obtain the total EEG score. The correlations of total EEG score with total MRI score and total Sarnat score (TSS, used to evaluate clinical gradings) were analyzed by Spearman correlation analysis. The total EEG score was compared among the neonates with different clinical gradings and among the neonates with different head MRI gradings. The receiver operating characteristic (ROC) curve and the area under thecurve (AUC) were used to evaluate the value of total EEG score in diagnosing moderate/severe head MRI abnormalities and clinical moderate/severe HIE, which was then compared with the aEEG grading method.
RESULTS:
A total of 50 neonates with HIE were included. The total EEG score was positively correlated with the total head MRI score and TSS (rs=0.840 and 0.611 respectively, P<0.001). There were significant differences in the total EEG score between different clinical grading groups and different head MRI grading groups (P<0.05). The total EEG score and the aEEG grading method had an AUC of 0.936 and 0.617 respectively in judging moderate/severe head MRI abnormalities (P<0.01) and an AUC of 0.887 and 0.796 respectively in judging clinical moderate/severe HIE (P>0.05). The total EEG scores of ≤6 points, 7-13 points, and ≥14 points were defined as mild, moderate, and severe EEG abnormalities respectively, which had the best consistency with clinical grading and head MRI grading (P<0.05).
CONCLUSIONS
The new EEG background scoring method can quantitatively reflect the severity of brain injury and can be used for the judgment of brain function in neonates with HIE.
Infant, Newborn
;
Humans
;
Hypoxia-Ischemia, Brain/diagnostic imaging*
;
Retrospective Studies
;
Brain Injuries
;
Electroencephalography
;
ROC Curve
3.Development and global validation of a 1-week-old piglet head finite element model for impact simulations.
Zhong-Qing SU ; Da-Peng LI ; Rui LI ; Guang-Liang WANG ; Lang LIU ; Ya-Feng WANG ; Ya-Zhou GUO ; Zhi-Gang LI
Chinese Journal of Traumatology 2023;26(3):147-154
PURPOSE:
Child head injury under impact scenarios (e.g. falls, vehicle crashes, etc.) is an important topic in the field of injury biomechanics. The head of piglet was commonly used as the surrogate to investigate the biomechanical response and mechanisms of pediatric head injuries because of the similar cellular structures and material properties. However, up to date, piglet head models with accurate geometry and material properties, which have been validated by impact experiments, are seldom. We aim to develop such a model for future research.
METHODS:
In this study, first, the detailed anatomical structures of the piglet head, including the skull, suture, brain, pia mater, dura mater, cerebrospinal fluid, scalp and soft tissue, were constructed based on CT scans. Then, a structured butterfly method was adopted to mesh the complex geometries of the piglet head to generate high-quality elements and each component was assigned corresponding constitutive material models. Finally, the guided drop tower tests were conducted and the force-time histories were ectracted to validate the piglet head finite element model.
RESULTS:
Simulations were conducted on the developed finite element model under impact conditions and the simulation results were compared with the experimental data from the guided drop tower tests and the published literature. The average peak force and duration of the guide drop tower test were similar to that of the simulation, with an error below 10%. The inaccuracy was below 20%. The average peak force and duration reported in the literature were comparable to those of the simulation, with the exception of the duration for an impact energy of 11 J. The results showed that the model was capable to capture the response of the pig head.
CONCLUSION
This study can provide an effective tool for investigating child head injury mechanisms and protection strategies under impact loading conditions.
Animals
;
Swine
;
Finite Element Analysis
;
Skull/injuries*
;
Craniocerebral Trauma/diagnostic imaging*
;
Brain
;
Biomechanical Phenomena
;
Scalp
4.Objective Assessment of Visual Field Defects Caused by Optic Chiasm and Its Posterior Visual Pathway Injury.
Jian XIANG ; Xu WANG ; Li-Li YU ; Kang-Jia JIN ; Ying-Kai YANG
Journal of Forensic Medicine 2023;39(4):350-359
OBJECTIVES:
To investigate the characteristics and objective assessment method of visual field defects caused by optic chiasm and its posterior visual pathway injury.
METHODS:
Typical cases of visual field defects caused by injuries to the optic chiasm, optic tracts, optic radiations, and visual cortex were selected. Visual field examinations, visual evoked potential (VEP) and multifocal visual evolved potential (mfVEP) measurements, craniocerebral CT/MRI, and retinal optical coherence tomography (OCT) were performed, respectively, and the aforementioned visual electrophysiological and neuroimaging indicators were analyzed comprehensively.
RESULTS:
The electrophysiological manifestations of visual field defects caused by optic chiasm injuries were bitemporal hemianopsia mfVEP abnormalities. The visual field defects caused by optic tract, optic radiation, and visual cortex injuries were all manifested homonymous hemianopsia mfVEP abnormalities contralateral to the lesion. Mild relative afferent pupil disorder (RAPD) and characteristic optic nerve atrophy were observed in hemianopsia patients with optic tract injuries, but not in patients with optic radiation or visual cortex injuries. Neuroimaging could provide morphological evidence of damages to the optic chiasm and its posterior visual pathway.
CONCLUSIONS
Visual field defects caused by optic chiasm, optic tract, optic radiation, and visual cortex injuries have their respective characteristics. The combined application of mfVEP and static visual field measurements, in combination with neuroimaging, can maximize the assessment of the location and degree of visual pathway damage, providing an effective scheme for the identification of such injuries.
Humans
;
Optic Chiasm/pathology*
;
Visual Pathways/pathology*
;
Visual Fields
;
Evoked Potentials, Visual
;
Random Amplified Polymorphic DNA Technique
;
Hemianopsia/complications*
;
Vision Disorders/pathology*
;
Optic Nerve Injuries/diagnostic imaging*
;
Brain Injuries, Traumatic/diagnostic imaging*
5.Logistic Regression Analysis of the Mechanism of Blunt Brain Injury Inference Based on CT Images.
Xue-Yang SUN ; Qi-Fan YANG ; Yun-Liang ZHU ; Yan-Bin WANG ; He-Wen DONG ; Ming-Zhen YANG ; Zhi-Ling TIAN ; Lei WAN ; Dong-Hua ZOU ; Xiao-Tian YU ; Ning-Guo LIU
Journal of Forensic Medicine 2022;38(2):217-222
OBJECTIVES:
To study the correlation between CT imaging features of acceleration and deceleration brain injury and injury degree.
METHODS:
A total of 299 cases with acceleration and deceleration brain injury were collected and divided into acceleration brain injury group and deceleration brain injury group according to the injury mechanism. Subarachnoid hemorrhage (SAH) and Glasgow coma scale (GCS), combined with skull fracture, epidural hematoma (EDH), subdural hematoma (SDH) and brain contusion on the same and opposite sides of the stress point were selected as the screening indexes. χ2 test was used for primary screening, and binary logistic regression analysis was used for secondary screening. The indexes with the strongest correlation in acceleration and deceleration injury mechanism were selected.
RESULTS:
χ2 test showed that skull fracture and EDH on the same side of the stress point; EDH, SDH and brain contusion on the opposite of the stress point; SAH, GCS were correlated with acceleration and deceleration injury (P<0.05). According to binary logistic regression analysis, the odds ratio (OR) of EDH on the same side of the stress point was 2.697, the OR of brain contusion on the opposite of the stress point was 0.043 and the OR of GCS was 0.238, suggesting there was statistically significant (P<0.05).
CONCLUSIONS
EDH on the same side of the stress point, brain contusion on the opposite of the stress point and GCS can be used as key indicators to distinguish acceleration and deceleration injury mechanism. In addition, skull fracture on the same side of the stress point, EDH and SDH on the opposite of the stress point and SAH were relatively weak indicators in distinguishing acceleration and deceleration injury mechanism.
Brain Contusion
;
Brain Injuries/diagnostic imaging*
;
Hematoma, Epidural, Cranial
;
Hematoma, Subdural/etiology*
;
Humans
;
Logistic Models
;
Skull Fractures/diagnostic imaging*
;
Tomography, X-Ray Computed
;
Wounds, Nonpenetrating/diagnostic imaging*
6.Automatic Identification of Brain Injury Mechanism Based on Deep Learning.
Qi-Fan YANG ; Xue-Yang SUN ; Yan-Bin WANG ; Zhi-Ling TIAN ; He-Wen DONG ; Lei WAN ; Dong-Hua ZOU ; Xiao-Tian YU ; Guang-Zheng ZHANG ; Ning-Guo LIU
Journal of Forensic Medicine 2022;38(2):223-230
OBJECTIVES:
To apply the convolutional neural network (CNN) Inception_v3 model in automatic identification of acceleration and deceleration injury based on CT images of brain, and to explore the application prospect of deep learning technology in forensic brain injury mechanism inference.
METHODS:
CT images from 190 cases with acceleration and deceleration brain injury were selected as the experimental group, and CT images from 130 normal brain cases were used as the control group. The above-mentioned 320 imaging data were divided into training validation dataset and testing dataset according to random sampling method. The model classification performance was evaluated by the accuracy rate, precision rate, recall rate, F1-value and AUC value.
RESULTS:
In the training process and validation process, the accuracy rate of the model to classify acceleration injury, deceleration injury and normal brain was 99.00% and 87.21%, which met the requirements. The optimized model was used to test the data of the testing dataset, the result showed that the accuracy rate of the model in the test set was 87.18%, and the precision rate, recall rate, F1-score and AUC of the model to recognize acceleration injury were 84.38%, 90.00%, 87.10% and 0.98, respectively, to recognize deceleration injury were 86.67%, 72.22%, 78.79% and 0.92, respectively, to recognize normal brain were 88.57%, 89.86%, 89.21% and 0.93, respectively.
CONCLUSIONS
Inception_v3 model has potential application value in distinguishing acceleration and deceleration injury based on brain CT images, and is expected to become an auxiliary tool to infer the mechanism of head injury.
Brain/diagnostic imaging*
;
Brain Injuries
;
Deep Learning
;
Humans
;
Neural Networks, Computer
7.Arterial spin labeling magnetic resonance evaluates changes of cerebral blood flow in patients with mild traumatic brain injury.
Feng XIONG ; Tianhui LI ; Yizhen PAN ; Yuling LIU ; Jie ZHANG ; Lijun BAI
Journal of Central South University(Medical Sciences) 2022;47(8):1016-1024
OBJECTIVES:
The patients with mild traumatic brain injury (mTBI) accounts for more than 80% of the patients with brain injury. Most patients with mTBI have no abnormalities in CT examination. Therefore, most patients choose to self-care and recover rather than seeking medical treatment. In fact, mTBI may result in persistent cognitive decline and neurobehavioral dysfunction. In addition, changes occurred in neurochemistry, metabolism, and cells after injury may cause changes in cerebral blood flow (CBF), which is one of the causes of secondary injury and slow brain repair. This study aims to evaluate the changes of CBF with the progression of the disease in patients with mTBI based on arterial spin labeling (ASL) magnetic resonance imaging technology.
METHODS:
In the outpatient or emergency department of the Second Affiliated Hospital of Wenzhou Medical University, 43 mTBI patients were collected as an mTBI group, and 43 normal subjects with age, gender, and education level matching served as a control group. They all received clinical neuropsychology and cognitive function evaluation and magnetic resonance imaging. In the mTBI group, 22 subjects were followed up at acute phase, 1 month, 3 months, and 12 months. Based on the control group, the abnormal regions of CBF in the whole brain of mTBI patients were analyzed. The abnormal regions were taken as the regions of interest (ROI). The correlation of the values of the CBF in ROIs with clinical indications, cognitive function, and the changes of CBF in ROI at each time point during the follow-up were analyzed.
RESULTS:
Compared with the control group, the CBF in the bilateral dorsolateral superior frontal gyrus and auxiliary motor areas in the cortical region, as well as the right putamen, caudate nucleus, globus pallidus, and parahippocampus in the subcutaneous regions in the acute phase of the mTBI group were significantly increased (all P<0.01, TFCE-FWE correction). The analysis results of correlation of CBF with neuropsychology and cognitive domain showed that in the mTBI group, whole brain (r=0.528, P<0.001), right caudate nucleus (r=0.512, P<0.001), putamen (r=0.486, P<0.001), and globus pallidus (r=0.426, P=0.006) values of the were positively correlated with Backward Digit Span Test (BDST) score (reflectting working memory ability), and the right globus pallidus CBF was negatively correlated with the Post-Traumatic Stress Disorder Cheeklist-CivilianVersion (PCL-C) score (r=-0.402, P=0.010). Moreover, the follow-up study showed that abnormal CBF in these areas had not been restored. The correlation of CBF was negatively correlated with PCL-C and BDST at 1 months, 3 months, and 12 months (all P>0.05).
CONCLUSIONS
The elevated CBF value is one of the stress characteristics of brain injury in the mTBI patients at the acute phase. There is abnormal elevation of CBF values in multiple cortex or subcortical areas. Multi-time point studies show that there is no obvious change of CBF in abnormal areas, suggesting that potential clinical treatment is urgently needed for the mTBI patients.
Brain Concussion/diagnostic imaging*
;
Brain Injuries
;
Cerebrovascular Circulation/physiology*
;
Follow-Up Studies
;
Humans
;
Magnetic Resonance Imaging/methods*
;
Magnetic Resonance Spectroscopy
;
Spin Labels
8.Predictive Value of Cranial Ultrasound for Neurodevelopmental Outcomes of Very Preterm Infants with Brain Injury.
Xue-Hua ZHANG ; ; Shi-Jun QIU ; Wen-Juan CHEN ; Xi-Rong GAO ; Ya LI ; Jing CAO ; Jing-Jing ZHANG
Chinese Medical Journal 2018;131(8):920-926
BackgroundCompared with full-term infants, very preterm infants are more vulnerable to injury and long-term disability and are at high risk of death. The predictive value of ultrasound and imaging on the neurodevelopment is one of the hot topics. This study aimed to investigate the relationship between cranial ultrasound (cUS) variables and neurodevelopmental outcomes of very preterm infants.
MethodsTotally 129 very preterm infants (gestational age ≤28 weeks) in neonatal intensive care unit of Hunan Children's Hospital between January 2012 and November 2014 were included in this retrospective study. Serial cUS (weekly before discharge and monthly after discharge) was performed on the infants until 6 months or older. Magnetic resonance imaging (MRI) was performed on the infants at approximately the term-equivalent age. The mental developmental index (MDI) and psychomotor developmental index (PDI) were followed up until the infants were 24 months or older. The relationship between brain injury and MDI/PDI scores was analyzed.
ResultsThe consistency rate between cUS and MRI was 88%. At the first cUS, germinal matrix hemorrhage (GMH) Grades 3 and 4, hospitalization duration, and weight are significantly correlated with MDI/PDI and prognosis (MDI: odds ratio [OR] = 8.415, 0.982, and 0.042, P = 0.016, 0.000, and 0.004; PDI: OR = 7.149, 0.978, and 0.012, P = 0.025, 0.000, and 0.000, respectively). At the last cUS, gestational age, extensive cystic periventricular leukomalacia (c-PVL), and moderate and severe hydrocephaly are significantly correlated with MDI (OR = 0.292, 60.220, and 170.375, P = 0.004, 0.003, and 0.000, respectively). Extensive c-PVL and moderate and severe hydrocephaly are significantly correlated with PDI (OR = 76.861 and 116.746, P = 0.003 and 0.000, respectively).
ConclusionsVery premature infants with GMH Grades 3 and 4, short hospitalization duration, and low weight have low survival rates and poorly developed brain nerves. Cerebral palsy can result from severe cerebral hemorrhage, moderate and severe hydrocephaly, and extensive c-PVL. The sustained, inhomogeneous echogenicity of white matter may suggest subtle brain injury.
Brain ; diagnostic imaging ; Brain Injuries ; diagnostic imaging ; Cerebral Hemorrhage ; diagnostic imaging ; Echoencephalography ; Female ; Gestational Age ; Humans ; Hydrocephalus ; diagnostic imaging ; Infant, Premature ; Infant, Premature, Diseases ; diagnostic imaging ; Magnetic Resonance Imaging ; Pregnancy ; Retrospective Studies
9.Current Clinical Applications of Diffusion-Tensor Imaging in Neurological Disorders.
Woo Suk TAE ; Byung Joo HAM ; Sung Bom PYUN ; Shin Hyuk KANG ; Byung Jo KIM
Journal of Clinical Neurology 2018;14(2):129-140
Diffusion-tensor imaging (DTI) is a noninvasive medical imaging tool used to investigate the structure of white matter. The signal contrast in DTI is generated by differences in the Brownian motion of the water molecules in brain tissue. Postprocessed DTI scalars can be used to evaluate changes in the brain tissue caused by disease, disease progression, and treatment responses, which has led to an enormous amount of interest in DTI in clinical research. This review article provides insights into DTI scalars and the biological background of DTI as a relatively new neuroimaging modality. Further, it summarizes the clinical role of DTI in various disease processes such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's dementia, epilepsy, ischemic stroke, stroke with motor or language impairment, traumatic brain injury, spinal cord injury, and depression. Valuable DTI postprocessing tools for clinical research are also introduced.
Amyotrophic Lateral Sclerosis
;
Brain
;
Brain Injuries
;
Dementia
;
Depression
;
Diagnostic Imaging
;
Disease Progression
;
Epilepsy
;
Multiple Sclerosis
;
Nervous System Diseases*
;
Neuroimaging
;
Parkinson Disease
;
Spinal Cord Injuries
;
Stroke
;
Water
;
White Matter
10.The effect of tranexamic acid in traumatic brain injury: A randomized controlled trial.
Abolfazl JOKAR ; Koorosh AHMADI ; Tayyebeh SALEHI ; Mahdi SHARIF-ALHOSEINI ; Vafa RAHIMI-MOVAGHAR ;
Chinese Journal of Traumatology 2017;20(1):49-51
PURPOSETraumatic brain injury (TBI) is a leading cause of death and disability. Intracranial hemorrhage (ICH) secondary to TBI is associated with a high risk of coagulopathy which leads to increasing risk of hemorrhage growth and higher mortality rate. Therefore, antifibrinolytic agents such as tranexamic acid (TA) might reduce traumatic ICH. The aim of the present study was to investigate the extent of ICH growth after TA administration in TBI patients.
METHODSThis single-blind randomized controlled trial was conducted on patients with traumatic ICH (with less than 30 ml) referring to the emergency department of Vali-Asr Hospital, Arak, Iran in 2014. Patients, based on the inclusion and exclusion criteria, were divided into intervention and control groups (40 patients each). All patients received a conservative treatment for ICH, as well as either intravenous TA or placebo. The extent of ICH growth as the primary outcome was measured by brain CT scan after 48 h.
RESULTSAlthough brain CT scan showed a significant increase in hemorrhage volume in both groups after 48 h, it was significantly less in the TA group than in the control group (p = 0.04). The mean total hemorrhage expansion was (1.7 ± 9.7) ml and (4.3 ± 12.9) ml in TA and placebo groups, respectively (p < 0.001).
CONCLUSIONIt has been established that TA, as an effective hospital-based treatment for acute TBI, could reduce ICH growth. Larger studies are needed to compare the effectiveness of different doses.
Adult ; Antifibrinolytic Agents ; therapeutic use ; Brain Injuries, Traumatic ; diagnostic imaging ; drug therapy ; Cerebral Hemorrhage, Traumatic ; drug therapy ; Female ; Humans ; Male ; Middle Aged ; Single-Blind Method ; Tomography, X-Ray Computed ; Tranexamic Acid ; therapeutic use

Result Analysis
Print
Save
E-mail