1.Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain.
Hang XIAN ; Huan GUO ; Yuan-Ying LIU ; Jian-Lei ZHANG ; Wen-Chao HU ; Ming-Jun YU ; Rui ZHAO ; Rou-Gang XIE ; Hang ZHANG ; Rui CONG
Neuroscience Bulletin 2023;39(12):1789-1806
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Humans
;
Mice
;
Animals
;
Hyperalgesia/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Hypothermia/metabolism*
;
Neuralgia
;
Brachial Plexus/injuries*
;
Edema/metabolism*
2.Baicalin treats cerebral ischemia reperfusion-induced brain edema in rats by inhibiting TRPV4 and AQP4 of astrocytes.
Xiao-Yu ZHENG ; Wen-Ting SONG ; Ye-Hao ZHANG ; Hui CAO ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(4):1031-1038
This study aims to explore the pharmacodynamic effect of baicalin on rat brain edema induced by cerebral ischemia reperfusion injury and discuss the mechanism from the perspective of inhibiting astrocyte swelling, which is expected to serve as a refe-rence for the treatment of cerebral ischemia with Chinese medicine. To be specific, middle cerebral artery occlusion(suture method) was used to induce cerebral ischemia in rats. Rats were randomized into normal group, model group, high-dose baicalin(20 mg·kg~(-1)) group, and low-dose baicalin(10 mg·kg~(-1)) group. The neurobehavior, brain index, brain water content, and cerebral infarction area of rats were measured 6 h and 24 h after cerebral ischemia. Brain slices were stained with hematoxylin and eosin(HE) for the observation of pathological morphology of cerebral cortex after baicalin treatment. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of total L-glutathione(GSH) and glutamic acid(Glu) in brain tissue, Western blot to measure the content of glial fibrillary acidic protein(GFAP), aquaporin-4(AQP4), and transient receptor potential vanilloid type 4(TRPV4), and immunohistochemical staining to observe the expression of GFAP. The low-dose baicalin was used for exploring the mechanism. The experimental results showed that the neurobehavioral scores(6 h and 24 h of cerebral ischemia), brain water content, and cerebral infarction area of the model group were increased, and both high-dose and low-dose baicalin can lower the above three indexes. The content of GSH dropped but the content of Glu raised in brain tissue of rats in the model group. Low-dose baicalin can elevate the content of GSH and lower the content of Glu. According to the immunohistochemical staining result, the model group demonstrated the increase in GFAP expression, and swelling and proliferation of astrocytes, and the low-dose baicalin can significantly improve this situation. The results of Western blot showed that the expression of GFAP, TRPV4, and AQP4 in the cerebral cortex of the model group increased, and the low-dose baicalin reduce their expression. The cerebral cortex of rats in the model group was severely damaged, and the low-dose baicalin can significantly alleviate the damage. The above results indicate that baicalin can effectively relieve the brain edema caused by cerebral ischemia reperfusion injury in rats, possibly by suppressing astrocyte swelling and TRPV4 and AQP4.
Animals
;
Aquaporin 4/genetics*
;
Astrocytes
;
Brain Edema/drug therapy*
;
Brain Ischemia/metabolism*
;
Flavonoids
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion
;
TRPV Cation Channels/therapeutic use*
3.Renal replacement therapy in neonates with an inborn error of metabolism
Korean Journal of Pediatrics 2019;62(2):43-47
Hyperammonemia can be caused by several genetic inborn errors of metabolism including urea cycle defects, organic acidemias, fatty acid oxidation defects, and certain disorders of amino acid metabolism. High levels of ammonia are extremely neurotoxic, leading to astrocyte swelling, brain edema, coma, severe disability, and even death. Thus, emergency treatment for hyperammonemia must be initiated before a precise diagnosis is established. In neonates with hyperammonemia caused by an inborn error of metabolism, a few studies have suggested that peritoneal dialysis, intermittent hemodialysis, and continuous renal replacement therapy (RRT) are effective modalities for decreasing the plasma level of ammonia. In this review, we discuss the current literature related to the use of RRT for treating neonates with hyperammonemia caused by an inborn error of metabolism, including optimal prescriptions, prognosis, and outcomes. We also review the literature on new technologies and instrumentation for RRT in neonates
Ammonia
;
Astrocytes
;
Brain Edema
;
Coma
;
Diagnosis
;
Edema
;
Emergency Treatment
;
Humans
;
Hyperammonemia
;
Infant, Newborn
;
Metabolism
;
Metabolism, Inborn Errors
;
Peritoneal Dialysis
;
Plasma
;
Prescriptions
;
Prognosis
;
Renal Dialysis
;
Renal Replacement Therapy
;
Urea
4.Relationship between Abnormal Hyperintensity on T2-Weighted Images Around Developmental Venous Anomalies and Magnetic Susceptibility of Their Collecting Veins: In-Vivo Quantitative Susceptibility Mapping Study
Yangsean CHOI ; Jinhee JANG ; Yoonho NAM ; Na Young SHIN ; Hyun Seok CHOI ; So Lyung JUNG ; Kook Jin AHN ; Bum soo KIM
Korean Journal of Radiology 2019;20(4):662-670
OBJECTIVE: A developmental venous anomaly (DVA) is a vascular malformation of ambiguous clinical significance. We aimed to quantify the susceptibility of draining veins (χvein) in DVA and determine its significance with respect to oxygen metabolism using quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: Brain magnetic resonance imaging of 27 consecutive patients with incidentally detected DVAs were retrospectively reviewed. Based on the presence of abnormal hyperintensity on T2-weighted images (T2WI) in the brain parenchyma adjacent to DVA, the patients were grouped into edema (E+, n = 9) and non-edema (E−, n = 18) groups. A 3T MR scanner was used to obtain fully flow-compensated gradient echo images for susceptibility-weighted imaging with source images used for QSM processing. The χvein was measured semi-automatically using QSM. The normalized χvein was also estimated. Clinical and MR measurements were compared between the E+ and E− groups using Student's t-test or Mann-Whitney U test. Correlations between the χvein and area of hyperintensity on T2WI and between χvein and diameter of the collecting veins were assessed. The correlation coefficient was also calculated using normalized veins. RESULTS: The DVAs of the E+ group had significantly higher χvein (196.5 ± 27.9 vs. 167.7 ± 33.6, p = 0.036) and larger diameter of the draining veins (p = 0.006), and patients were older (p = 0.006) than those in the E− group. The χvein was also linearly correlated with the hyperintense area on T2WI (r = 0.633, 95% confidence interval 0.333–0.817, p < 0.001). CONCLUSION: DVAs with abnormal hyperintensity on T2WI have higher susceptibility values for draining veins, indicating an increased oxygen extraction fraction that might be associated with venous congestion.
Brain
;
Edema
;
Humans
;
Hyperemia
;
Magnetic Resonance Imaging
;
Metabolism
;
Oxygen
;
Retrospective Studies
;
Vascular Malformations
;
Veins
5.Effect of Gastrodin on Early Brain Injury and Neurological Outcome After Subarachnoid Hemorrhage in Rats.
Xinzhi WANG ; Shuyue LI ; Jinbang MA ; Chuangang WANG ; Anzhong CHEN ; Zhenxue XIN ; Jianjun ZHANG
Neuroscience Bulletin 2019;35(3):461-470
Gastrodin is a phenolic glycoside that has been demonstrated to provide neuroprotection in preclinical models of central nervous system disease, but its effect in subarachnoid hemorrhage (SAH) remains unclear. In this study, we showed that intraperitoneal administration of gastrodin (100 mg/kg per day) significantly attenuated the SAH-induced neurological deficit, brain edema, and increased blood-brain barrier permeability in rats. Meanwhile, gastrodin treatment significantly reduced the SAH-induced elevation of glutamate concentration in the cerebrospinal fluid and the intracellular Ca overload. Moreover, gastrodin suppressed the SAH-induced microglial activation, astrocyte activation, and neuronal apoptosis. Mechanistically, gastrodin significantly reduced the oxidative stress and inflammatory response, up-regulated the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, phospho-Akt and B-cell lymphoma 2, and down-regulated the expression of BCL2-associated X protein and cleaved caspase-3. Our results suggested that the administration of gastrodin provides neuroprotection against early brain injury after experimental SAH.
Animals
;
Apoptosis
;
drug effects
;
Astrocytes
;
drug effects
;
metabolism
;
Benzyl Alcohols
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
metabolism
;
Brain
;
drug effects
;
metabolism
;
Brain Edema
;
etiology
;
prevention & control
;
Calcium
;
metabolism
;
Glucosides
;
administration & dosage
;
Glutamic Acid
;
metabolism
;
Male
;
Microglia
;
drug effects
;
metabolism
;
Neurons
;
drug effects
;
Neuroprotective Agents
;
administration & dosage
;
Oxidative Stress
;
drug effects
;
Rats, Sprague-Dawley
;
Subarachnoid Hemorrhage
;
complications
;
metabolism
;
prevention & control
6.Fluoxetine is Neuroprotective in Early Brain Injury via its Anti-inflammatory and Anti-apoptotic Effects in a Rat Experimental Subarachnoid Hemorrhage Model.
Hui-Min HU ; Bin LI ; Xiao-Dong WANG ; Yun-Shan GUO ; Hua HUI ; Hai-Ping ZHANG ; Biao WANG ; Da-Geng HUANG ; Ding-Jun HAO
Neuroscience Bulletin 2018;34(6):951-962
Fluoxetine, an anti-depressant drug, has recently been shown to provide neuroprotection in central nervous system injury, but its roles in subarachnoid hemorrhage (SAH) remain unclear. In this study, we aimed to evaluate whether fluoxetine attenuates early brain injury (EBI) after SAH. We demonstrated that intraperitoneal injection of fluoxetine (10 mg/kg per day) significantly attenuated brain edema and blood-brain barrier (BBB) disruption, microglial activation, and neuronal apoptosis in EBI after experimental SAH, as evidenced by the reduction of brain water content and Evans blue dye extravasation, prevention of disruption of the tight junction proteins zonula occludens-1, claudin-5, and occludin, a decrease of cells staining positive for Iba-1, ED-1, and TUNEL and a decline in IL-1β, IL-6, TNF-α, MDA, 3-nitrotyrosine, and 8-OHDG levels. Moreover, fluoxetine significantly improved the neurological deficits of EBI and long-term sensorimotor behavioral deficits following SAH in a rat model. These results indicated that fluoxetine has a neuroprotective effect after experimental SAH.
Animals
;
Apoptosis
;
drug effects
;
Blood-Brain Barrier
;
drug effects
;
Brain Edema
;
drug therapy
;
etiology
;
Cytokines
;
genetics
;
metabolism
;
Disease Models, Animal
;
Fluoxetine
;
pharmacology
;
therapeutic use
;
In Situ Nick-End Labeling
;
Male
;
Neuroprotective Agents
;
pharmacology
;
therapeutic use
;
Pain Measurement
;
Psychomotor Performance
;
drug effects
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Subarachnoid Hemorrhage
;
complications
;
drug therapy
;
pathology
;
Time Factors
;
Vasospasm, Intracranial
;
drug therapy
;
etiology
7.Relationship Between Cytogenetic Complexity and Peritumoral Edema in High-Grade Astrocytoma.
Kyung Ho JEONG ; Young Jin SONG ; Jin Yeong HAN ; Ki Uk KIM
Annals of Laboratory Medicine 2016;36(6):583-589
BACKGROUND: The purpose of the study is to reveal the association of cytogenetic compltyexi and peritumoral edema volume (PTEV) and its prognostic significance in high-grade astrocytoma patients by culturing patient tumor cells. METHODS: Twenty-seven high-grade astrocytoma patients were divided into three groups according to karyotype complexity: normal, non-complex karyotype (NCK), and complex karyotype (CK). Endothelial growth factor receptor (EGFR) amplification was detected by FISH, and its association with chromosome 7 abnormalities was analyzed. Mean PTEV of each group was compared by ANOVA to evaluate the relationship between PTEV and cytogenetic complexity. RESULTS: The PTEV of patients in normal (n=6), NCK (n=8), and CK (n=13) groups were 24.52±17.73, 34.26±35.04, and 86.31±48.7 cm3, respectively (P=0.005). Ten out of 11 patients with EGFR amplification showed abnormalities in chromosome 7. The mean PTEV of EGFR-amplified and non-amplified groups were 80.4±53.7 and 41.3±37.9 cm3, respectively (P=0.035). The average survival of patients with PTEV less than 90 cm3 was 30.52±26.11 months, while in patients with PTEVs over or equal to 90 cm3, it was 10.83±5.53 months (P=0.007). CONCLUSIONS: The results show an association of complex karyotype with the PTEV of high-grade astrocytoma. EGFR amplification plays a significant role in the formation of peritumoral edema, causing PTEV to increase, which is related with survival. This implies that cytogenetic karyotype can be applied as a prognostic factor.
Adult
;
Aged
;
Astrocytoma/diagnostic imaging/mortality/*pathology
;
Brain Neoplasms/diagnostic imaging/mortality/*pathology
;
Chromosome Aberrations
;
Chromosomes, Human, Pair 7
;
Edema/diagnostic imaging/pathology
;
Female
;
Humans
;
In Situ Hybridization, Fluorescence
;
Kaplan-Meier Estimate
;
Karyotype
;
Magnetic Resonance Imaging
;
Male
;
Middle Aged
;
Neoplasm Grading
;
Prognosis
;
Receptors, Vascular Endothelial Growth Factor/metabolism
;
Tumor Cells, Cultured
;
Young Adult
8.Relationship between the Expression of α-syn and Neuronal Apoptosis in Brain Cortex of Acute Alcoholism Rats.
Fan LI ; Yue ZHANG ; Shu Ling MA
Journal of Forensic Medicine 2016;32(6):406-409
OBJECTIVES:
To observe the changes of expression of α-synuclein (α-syn) and neuronal apoptosis in brain cortex of acute alcoholism rats and to explore the mechanism of the damage caused by ethanol to the neurons.
METHODS:
The model of acute alcoholism rat was established by 50% alcohol gavage. The α-syn and caspase-3 were detected by immunohistochemical staining and imaging analysis at 1 h, 3 h, 6 h and 12 h after acute alcoholism. The number of positive cell and mean of optical density were detected and the trend change was analyzed. The variance analysis and t-test were also performed.
RESULTS:
The number of α-syn positive cell and average optical density in brain cortex of acute alcoholism rat increased significantly and peaked at 6 hour with a following slight decrease at 12 h, but still higher than the groups at 1 h and 3 h. Within 12 hours after poisoning, the number of caspase-3 positive cell and average optical density in brain cortex of rats gradually increased.
CONCLUSIONS
The abnormal aggregation of α-syn caused by brain edema and hypoxia may participate the early stage of neuronal apoptosis in brain cortex after acute alcoholism.
Alcoholism/pathology*
;
Animals
;
Apoptosis
;
Brain Edema/pathology*
;
Caspase 3/metabolism*
;
Cerebral Cortex/pathology*
;
Ethanol
;
Hypoxia/pathology*
;
Neurons/pathology*
;
Rats
;
alpha-Synuclein/metabolism*
9.Expression of Aquaporin 4 in Diffuse Brain Injury of Rats.
Ren-hui CHEN ; Song-guo HE ; Can-xin CAI ; Bo-xue HUANG ; Zhi-rong WANG
Journal of Forensic Medicine 2016;32(1):18-25
OBJECTIVE:
To observe the expression of aquaporin 4 (AQP4) in diffuse brain injury (DBI) of rats and to explore the corresponding effect of AQP4 for brain edema.
METHODS:
The rat model of DBI was established using Marmarou's impact-compression trauma model. Brain water content was measured by dry-wet weight method. Blood-brain barrier permeability was evaluated by Evans blue (EB) staining. Immunohistochemical method was used to observe the expression of AQP4.
RESULTS:
Brain water content increased after 3 h and peaked at 24 h after DBI. Brain EB content significantly increased and peaked at 12 h after DBI. The expression of AQP4 significantly increased after 3 h and peaked at 24 h after DBI, and the number of AQP4 positive astrocytes increased.
CONCLUSION
The increment of the permeability of blood-brain barrier and the expression of AQP4 may contribute to the development of brain edema in rat DBI. The change of AQP4 expression in astrocytes may also contribute to determine DBI.
Animals
;
Aquaporin 4/metabolism*
;
Astrocytes
;
Blood-Brain Barrier/metabolism*
;
Brain
;
Brain Edema/metabolism*
;
Brain Injuries/metabolism*
;
Cell Membrane Permeability/genetics*
;
Disease Models, Animal
;
Permeability
;
Rats
;
Water
10.Protective effects of activated protein C on neurovascular unit in a rat model of intrauterine infection-induced neonatal white matter injury.
Sheng-juan JIN ; Yan LIU ; Shi-hua DENG ; Tu-lian LIN ; Abid RASHID ; Li-hong LIAO ; Qin NING ; Xiao-ping LUO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(6):904-909
Activated protein C (APC), a natural anticoagulant, has been reported to exert direct vasculoprotective, neural protective, anti-inflammatory, and proneurogenic activities in the central nervous system. This study was aimed to explore the neuroprotective effects and potential mechanisms of APC on the neurovascular unit of neonatal rats with intrauterine infection-induced white matter injury. Intraperitoneal injection of 300 μg/kg lipopolysaccharide (LPS) was administered consecutively to pregnant Sprague-Dawley rats at embryonic days 19 and 20 to establish the rat model of intrauterine infection- induced white matter injury. Control rats were injected with an equivalent amount of sterile saline on the same time. APC at the dosage of 0.2 mg/kg was intraperitoneally injected to neonatal rats immediately after birth. Brain tissues were collected at postnatal day 7 and stained with hematoxylin and eosin (H&E). Immunohistochemistry was used to evaluate myelin basic protein (MBP) expression in the periventricular white matter region. Blood-brain barrier (BBB) permeability and brain water content were measured using Evens Blue dye and wet/dry weight method. Double immunofluorescence staining and real-time quantitative PCR were performed to detect microglial activation and the expression of protease activated receptor 1 (PAR1). Typical pathological changes of white matter injury were observed in rat brains exposed to LPS, and MBP expression in the periventricular region was significantly decreased. BBB was disrupted and the brain water content was increased. Microglia were largely activated and the mRNA and protein levels of PAR1 were elevated. APC administration ameliorated the pathological lesions of the white matter and increased MBP expression. BBB permeability and brain water content were reduced. Microglia activation was inhibited and the PAR1 mRNA and protein expression levels were both down-regulated. Our results suggested that APC exerted neuroprotective effects on multiple components of the neurovascular unit in neonatal rats with intrauterine infection- induced white matter injury, and the underlying mechanisms might involve decreased expression of PAR1.
Animals
;
Animals, Newborn
;
Blood-Brain Barrier
;
Brain Edema
;
metabolism
;
Cerebrovascular Circulation
;
Female
;
Male
;
Protein C
;
metabolism
;
Rats
;
Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail