1.Analysis of GCDH gene variant in a child with Glutaric aciduria type I.
Hanjun YIN ; Qiong XUE ; Suyue ZHU
Chinese Journal of Medical Genetics 2022;39(1):39-42
OBJECTIVE:
To explore the genetic basis for a neonate affected with Glutaric aciduria type I (GA-I).
METHODS:
Targeted capture and high-throughput sequencing was carried out for the proband and her parents. Candidate variants were verified by Sanger sequencing.
RESULTS:
The proband was found to harbor compound heterozygous variants of the GCDH gene, namely c.523G>A and c.1190T>C, which was derived from her father and mother, respectively.
CONCLUSION
The compound heterozygous variants of the GCDH gene probably underlay the GA-I in the patient.
Amino Acid Metabolism, Inborn Errors/genetics*
;
Brain Diseases, Metabolic/genetics*
;
Child
;
Female
;
Glutaryl-CoA Dehydrogenase/genetics*
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Infant, Newborn
;
Mutation
2.Clinical characterization and genetic testing for a patient with creatine deficiency syndrome 1.
Shu XYU ; Chen XU ; Yuan LYU ; Chuang LI ; Caixia LIU
Chinese Journal of Medical Genetics 2022;39(2):213-215
OBJECTIVE:
To explore the genetic basis for a child affected with cerebral creatine deficiency syndrome 1 (CCDS1).
METHODS:
High-throughput sequencing was carried out to screen pathogenic variant associated with the clinical phenotype of the proband. The candidate variant was verified by Sanger sequencing.
RESULTS:
High-throughput sequencing revealed that the proband has carried heterozygous c.327delG variant of the SLC6A8 gene, which was verified by Sanger sequencing.Neither parent was found to carry the same variant.
CONCLUSION
The de novo heterozygous c.327delG variant of the SLC6A8 gene probably underlay the CCDS1 in this child.
Brain Diseases, Metabolic, Inborn/genetics*
;
Creatine
;
Genetic Testing
;
Heterozygote
;
Humans
;
Mental Retardation, X-Linked
;
Mutation
3.Analysis of CGDH gene variants and clinical features in three patients with glutaric aciduria type Ⅰ.
Jianqiang TAN ; Dayu CHEN ; Tizhen YAN ; Jun HUANG ; Ren CAI
Chinese Journal of Medical Genetics 2019;36(9):882-885
OBJECTIVE:
To screen for potential variants of GCDH gene in 3 patients clinically diagnosed as glutaric aciduria type Ⅰ.
METHODS:
GCDH gene variants was detected by Sanger sequencing among the three children and their family members.
RESULTS:
Sanger sequencing showed that patient 1 carried compound heterozygosity variants of c.532G>A (p.Gly178Arg) and c.655G>A (p.Ala219Thr) of the GCDH gene, while his father and mother respectively carried heterozygous c.532G>A(p.Gly178Arg) and c.655G>A (p.Ala219Thr) variants. Patient 2 carried c.532G>A (p.Gly178Arg) and a novel c.1060G>T (p.Gly354Cys) compound heterozygous variant, while his father and mother respectively carried heterozygous c.532G>A (p.Gly178Arg) and c.1060G>T (p.Gly354Cys) variant. Patient 3 carried homozygous c.532G>A (p.Gly178Arg) variant of the GCDH gene, for which both of his parents were heterozygous carriers.
CONCLUSION
The GCDH gene variant probably underlie the glutaric aciduria type Ⅰ among the 3 patients. Identifcation of the novel variant has enriched the spectrum of GCDH gene variants.
Amino Acid Metabolism, Inborn Errors
;
genetics
;
Brain Diseases, Metabolic
;
genetics
;
Female
;
Glutaryl-CoA Dehydrogenase
;
deficiency
;
genetics
;
Heterozygote
;
Humans
;
Male
4.Clinical phenotype and novel mutation in one of twins with glutaric acidemia type I.
Ying WANG ; Shujun FU ; Yuqi YANG ; Huaiyan WANG ; Yuping ZHANG ; Hong ZHOU ; Bin YU
Chinese Journal of Medical Genetics 2019;36(6):602-605
OBJECTIVE:
To review the clinical features of a male twin affected with glutaric academia type I (GA-I) and analyze the variations of glutaryl-CoA dehydrogenase (GCDH) gene.
METHODS:
Clinical data of the pair of twins and their parents were collected. Genomic DNA was extracted from peripheral blood samples, and variants of GCDH genes were detected by capture sequencing using a customized panel. Variants of the twins and their parents were verified by Sanger sequencing.
RESULTS:
The level of glutaric acyl carnitine (C5DC + C6OH) was 3.26 μmol/L in the male twin. The relative level of glutaric acid in urine was 547.51 by gas chromatography mass spectrometry analysis. Cerebral ultrasonography showed that the patient had subependymal hemorrhage, but no serious clinical manifestation was noted. After treating with special formula milk powder and L-carnitine, the boy showed good growth and development. Two heterozygous variants of the GCDH gene were detected in the patient, among which c.416C>G was suspected to be pathogenic, while c.109_110delCA was unreported. The variants were respectively inherited from his parents. The twin girl only carried the c.416C>G variant.
CONCLUSION
GA-I can be diagnosed by mass spectrometry, urine gas chromatographic mass spectrometry, imaging as well as genetic diagnosis. Early diagnosis and intervention is important.
Amino Acid Metabolism, Inborn Errors
;
genetics
;
Brain Diseases, Metabolic
;
genetics
;
Female
;
Glutaryl-CoA Dehydrogenase
;
deficiency
;
genetics
;
Humans
;
Male
;
Mutation
;
Phenotype
5.Clinical and variation analysis of three Chinese families affected with glutaric acidemia type 1.
Xiaorong SHI ; Zhonglin KE ; Aidong ZHENG ; Wenhuang XIE ; Guiling MO
Chinese Journal of Medical Genetics 2018;35(6):796-799
OBJECTIVE:
To detect potential variation in glutaryl-CoA dehydrogenase (GCDH) gene among three Chinese families affected with glutaric acidemia type Ⅰ(GA-1) and correlate the genotypes with phenotypes.
METHODS:
Genomic DNA was extracted from peripheral blood samples derived from three patients with GA-1 and their family members. The coding regions of the GCDH gene were amplified with PCR and subjected to Sanger sequencing.
RESULTS:
The clinical manifestation of the patients varied from macrocephaly to severe encephalopathy, with notable phenotypic difference between siblings carrying the same variation. In pedigrees 1 and 2, the probands have carried compound heterozygous variations c.1133C>T(p.Ala378Val) and c.1244-2A>C, which were derived their fathers and mothers, respectively. In pedigree 3, the proband has carried compound heterozygous variation c.339delT (p.Tyr113) and c.406G>T (p.Gly136Cys). Among these, variations c.339delT and c.1133C>T were verified as novel by retrieval of dsSNP, HGMD and 1000 genome database. Bioinformatic analysis suggested that above variations can affect protein function and are probably pathogenic.
CONCLUSION
Above discovery has expanded the mutation spectrum of the GCDH gene. No correlation was found between the clinical phenotype and genotype of GA-1 patients.
Amino Acid Metabolism, Inborn Errors
;
diagnosis
;
genetics
;
Brain Diseases, Metabolic
;
diagnosis
;
genetics
;
China
;
DNA Mutational Analysis
;
Glutaryl-CoA Dehydrogenase
;
deficiency
;
genetics
;
Humans
;
Mutation
6.Effect of glutaryl-CoA dehydrogenase gene silencing and high-concentration lysine on the viability of BRL hepatocytes.
Jin-Zhi GAO ; Cai ZHANG ; Qin YI ; Yan-Qin YING ; Xiao-Ping LUO
Chinese Journal of Contemporary Pediatrics 2017;19(9):1014-1019
OBJECTIVETo investigate the effect of glutaryl-CoA dehydrogenase (GCDH) gene silencing and accumulation of lysine metabolites on the viability of hepatocytes.
METHODSBRL cells were divided into normal control group, negative control group, and GCDH silencing group. The shRNA lentiviral vector for silencing GCDH gene was constructed, and the BRL hepatocytes in the GCDH silencing group and the negative control group were infected with this lentivirus and negative control virus respectively, and then cultured in a medium containing 5 mmol/L lysine. Immunofluorescence assay was used to measure the infection efficiency of lentivirus. Western blot was used to measure the expression of GCDH protein. MTT assay was used to evaluate cell viability. Hoechest33342 staining was used to measure cell apoptosis. Western blot was used to measure the expression of Caspase-3, an index of cell apoptosis.
RESULTSThe lentivirus constructed effectively silenced the GCDH gene in hepatocytes (P<0.01). MTT assay and Hoechest 33342 staining showed no significant differences in cell viability and apoptosis between groups (P>0.05). There was also no significant difference in the expression of Caspase-3 protein between groups (P>0.05).
CONCLUSIONSGCDH gene silencing and accumulation of lysine metabolites may not cause marked hepatocyte injury.
Amino Acid Metabolism, Inborn Errors ; pathology ; therapy ; Animals ; Apoptosis ; Brain Diseases, Metabolic ; pathology ; therapy ; Caspase 3 ; metabolism ; Cell Survival ; Cells, Cultured ; Fluorescent Antibody Technique ; Gene Silencing ; Glutaryl-CoA Dehydrogenase ; deficiency ; genetics ; Hepatocytes ; pathology ; Lysine ; metabolism ; Rats
7.Analysis of L2HGDH gene mutation in a patient with 2-hydroxyglutaric aciduria.
Yukui DENG ; Gen TANG ; Pengqiang WEN ; Guobing WANG ; Cailei ZHAO ; Zhanling CHEN ; Xiuwei ZHANG ; Xiaohong LIU ; Dong CUI ; Chengrong LI
Chinese Journal of Medical Genetics 2016;33(1):48-52
OBJECTIVETo explore pathogenic mutation in a family affected with 2-hydroxyglutaric aciduria.
METHODSExons of 3 candidate genes, including L2HGDH, D2HGDH and SLC25A1, were amplified with polymerase chain reaction and subjected to direct sequencing.
RESULTSDNA sequencing has found that the proband and his affected younger brother have both carried a heterozygous mutation c.845G>A (p.R282Q) in the exon 7 of the L2HGDH gene. The same mutation was not detected in the his sister who was healthy. Pedigree analysis has confirmed that the above mutation was inherited from the mother. No mutation was detected in exons and flanking sequences of the D2HGDH and SLC25A1 genes.
CONCLUSIONMutation of the L2HGDH gene probably underlies the 2-hydroxyglutaric aciduria in this family.
Alcohol Oxidoreductases ; genetics ; Base Sequence ; Brain ; diagnostic imaging ; Brain Diseases, Metabolic, Inborn ; diagnostic imaging ; enzymology ; genetics ; Child ; Female ; Humans ; Male ; Molecular Sequence Data ; Mutation ; Pedigree ; Radiography ; Young Adult
8.Complex heterogeneity phenotypes and genotypes of glutaric aciduria type 1.
Chinese Journal of Contemporary Pediatrics 2016;18(5):460-465
Glutaric aciduria type 1 is a rare autosomal recessive disorder. GCDH gene mutations cause glutaryl-CoA dehydrogenase deficiency and accumulation of glutaric acid and 3-hydroxyglutaric acid, resulting in damage of striatum and other brain nucleus and neurodegeneration. Patients with glutaric aciduria type 1 present with complex heterogeneous phenotypes and genotypes. The symptoms are extremely variable. The ages of the clinical onset of the patients range from the fetus period to adulthood. The patients with mild glutaric aciduria type 1 are almost asymptomatic before onset, however, severe glutaric aciduria type 1 may cause death or disability due to acute encephalopathy. Acute metabolic crisis in patients with underlying glutaric aciduria type 1 is often triggered by febrile illnesses, trauma, hunger, high-protein foods and vaccination during a vulnerable period of brain development in infancy or early childhood. The early-onset patients usually have a poor prognosis. Urinary organic acids analysis, blood acylcarnitines analysis and GCDH study are important for the diagnosis of this disorder. Neonatal screening is essential for the early diagnosis and the improvement of prognosis.
Amino Acid Metabolism, Inborn Errors
;
diagnosis
;
genetics
;
therapy
;
Brain Diseases, Metabolic
;
diagnosis
;
genetics
;
therapy
;
Genotype
;
Glutaryl-CoA Dehydrogenase
;
deficiency
;
genetics
;
Humans
;
Infant, Newborn
;
Neonatal Screening
;
Phenotype
;
Prenatal Diagnosis
;
Prognosis
9.Mutation analysis of GCDH gene in four patients with glutaric academia type I.
Qi LIU ; Yiping CHEN ; Wei CHEN
Chinese Journal of Medical Genetics 2015;32(2):187-191
OBJECTIVETo report on clinical features of four patients with glutaric academia type Ⅰ (GA-1) and mutations identified in the glutaryl-CoA dehydrogenase (GCDH) gene.
METHODSAll of the patients underwent magnetic resonance imaging (MRI) analysis. Blood acylcarnitine and urine organic acid were analyzed with tandem mass spectrometry and gas chromatographic mass spectrometry. Genomic DNA was extracted from peripheral blood samples. The 11 exons and flanking sequences of the GCDH gene were amplified with PCR and subjected to direct DNA sequencing.
RESULTSMutations of the GCDH gene were identified in all of the patients. Three had homozygous mutations. A recurrent mutation, IVS10-2A>C, was found in the four unrelated families, while the mutation of c.245G>C (p.Arg82Pro) was novel.
CONCLUSIONIVS10-2A>C is likely a founder mutation for Chinese population in Wenzhou.
Amino Acid Metabolism, Inborn Errors ; diagnostic imaging ; enzymology ; genetics ; Amino Acid Sequence ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; Brain Diseases, Metabolic ; diagnostic imaging ; enzymology ; genetics ; DNA Mutational Analysis ; Exons ; Female ; Glutaryl-CoA Dehydrogenase ; chemistry ; deficiency ; genetics ; metabolism ; Humans ; Infant ; Magnetic Resonance Imaging ; Male ; Molecular Sequence Data ; Point Mutation ; Radiography ; Sequence Alignment
10.Clinical and laboratory studies on 28 patients with glutaric aciduria type 1.
Qiao WANG ; Yuan DING ; Yupeng LIU ; Xiyuan LI ; Tongfei WU ; Jinqing SONG ; Yujie WANG ; Yanling YANG
Chinese Journal of Pediatrics 2014;52(6):415-419
OBJECTIVETo investigate the clinical, biochemical and genetic profiles of 28 Chinese patients with glutaric aciduria type 1.
METHODTwenty-eight patients with glutaric aciduria type 1 seen in the Department of Pediatrics, Peking University First Hospital from July 2003 to October 2013 were studied. The data of clinical course, laboratory examinations, cranial MRI and GCDH gene mutations of the patients were analyzed.
RESULT(1) Three cases were detected by newborn screening, and the other patients were diagnosed at the age of 2 months to 17 years. (2) 22 patients (79%) were infant onset cases with psychomotor retardation, dystonia, seizures, athetosis, recurrent vomiting, drowsiness or feeding difficulty. Only two of the 22 patients with infant onset got normal intelligence and movement after treatment. Twenty of them were improved slowly with delayed development, dystonia and other neurological problems. Three patients (11%) had late onset. They had motor regression, headache and seizure at the age of 8, 9 and 17 years, respectively. Rapid improvement was observed after treatment. (3) Cranial MRI has been checked in 23 patients; 22 of them showed characteristic widening of the Sylvian fissure, abnormalities of the basal ganglia, leukoencephalopathy and brain atrophy. Thirty-five mutations in GCDH gene of the patients were identified; c.148T>C (p.W50R) was the most common mutation with the frequency of 7.7%; 6 mutations (c.628A>G, c.700C>T, c.731G>T, c.963G>C, c.1031C>T and c.1109T>C) were novel.
CONCLUSIONGlutaric aciduria type 1 usually induced neurological deterioration resulting in severe psychomotor retardation and dystonia. Most of our patients were clinically diagnosed. Patients with early onset usually remained having neurological damage. Phenotype and genotype correlation has not been found in the patients. Neonatal screening for organic acidurias should be expanded in China.
Age of Onset ; Amino Acid Metabolism, Inborn Errors ; diagnosis ; genetics ; metabolism ; Brain Diseases, Metabolic ; diagnosis ; genetics ; metabolism ; DNA Mutational Analysis ; Follow-Up Studies ; Gas Chromatography-Mass Spectrometry ; Glutarates ; urine ; Glutaryl-CoA Dehydrogenase ; deficiency ; genetics ; metabolism ; Humans ; Infant, Newborn ; Intellectual Disability ; etiology ; pathology ; Magnetic Resonance Imaging ; Movement Disorders ; etiology ; pathology ; Mutation ; Neonatal Screening ; methods ; Retrospective Studies

Result Analysis
Print
Save
E-mail