1.Design of a Capture Stress-Free Marmoset Monkey Chair Device for Experiments and Its Preliminary Application
Shengye XU ; Junfeng HUANG ; Yihang CHEN ; Liangtang CHANG
Laboratory Animal and Comparative Medicine 2025;45(1):67-72
ObjectiveTo avoid stress responses in experimental monkeys caused by direct capture, and to improve the adaptability and experimental efficiency of marmosets in behavioral, two-photon imaging, and electrophysiological experiments, a device for immobilizing marmosets without the need for capture is developed. MethodsA set of compatible transport cage and monkey chair was produced through 3D graphic design and printing. First, the transport cage was aligned with the feeding outlet of the experimental housing cage, and the marmoset was gently guided into the transport cage. Then, the transport cage was connected to the monkey chair, and the marmoset was gently guided into the chair for immobilization. Subsequent experiments were carried out afterward. The effectiveness was evaluated by observing the efficiency of transport and immobilization, the marmoset cooperation level, and stress responses. ResultsAfter testing and improvements, the device successfully completed immobilization of marmosets without the need for capture, significantly improving the fluency and efficiency of the experiment. As the number of operations increased, the marmosets became more cooperative, and the operation speed was significantly enhanced. After using the device, the stress responses were noticeably reduced, with marmosets showing lower stress levels. In particular, compared to traditional capture methods, the use of this device significantly reduced marmoset anxiety and discomfort, increasing their cooperation levels during the experiment. ConclusionThe monkey chair device designed allows for restraint of marmosets without the need for capture, ensuring smooth progress of subsequent experiments while also safeguarding animal welfare. This device is easy to operate, highly practical, cost-effective, and has great potential for widespread application.
3.Modified Xiaoyaosan Alleviates Depression-like Behaviors by Regulating Activation of Hippocampal Microglia Cells in Rat Model of Juvenile Depression
Jiayi SHI ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Feng QIU ; Chang LEI ; Hongyu ZENG ; Kaimei TAN ; Hongqing ZHAO ; Dong YANG ; Yuhong WANG ; Pengxiao GUO ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):46-56
ObjectiveTo investigate the mechanism of Baihuan Xiaoyao Decoction (Xiaoyaosan added with Lilii Bulbus and Albiziae Cortex) in alleviating depression-like behaviors of juvenile rats by regulating the polarization of microglia. MethodSixty juvenile SD rats were randomized into normal control, model, fluoxetine, and low-, medium-, and high-dose (5.36, 10.71, 21.42 g·kg-1, respectively) Baihuan Xiaoyao decoction groups. The rat model of juvenile depression was established by chronic unpredictable mild stress (CUMS). The sucrose preference test (SPT) was carried out to examine the sucrose preference of rats. Forced swimming test (FST) was carried out to measure the immobility time of rats. The open field test (OFT) was conducted to measure the total distance, the central distance, the number of horizontal crossings, and the frequency of rearing. Morris water maze (MWM) was used to measure the escape latency and the number of crossing the platform. The immunofluorescence assay was employed to detect the expression of inducible nitric oxide synthase (iNOS, the polarization marker of M1 microglia) and CD206 (the polarization marker of M2 microglia). Real-time polymerase chain reaction was employed to determine the mRNA levels of iNOS, CD206, pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Western blotting was employed to determine the protein levels of iNOS and CD206 in the hippocampus. The levels of IL-4 and IL-6 in the hippocampus were detected by enzyme-linked immunosorbent assay. ResultCompared with the normal control group, the model rats showed a reduction in sucrose preference (P<0.05), an increase in immobility time (P<0.05), decreased motor and exploratory behaviors (P<0.05), and weakened learning and spatial memory (P<0.05). In addition, the model rats showed up-regulated mRNA and protein levels of iNOS and mRNA levels of IL-1β, IL-6, and TNF-α (P<0.05). Compared with the model group, Baihuan Xiaoyao decoction increased the sucrose preference value (P<0.05), shortened the immobility time (P<0.01), increased the motor and exploratory behaviors (P<0.05), and improved the learning and spatial memory (P<0.01). Furthermore, the decoction down-regulated the positive expression and protein level of iNOS, lowered the levels of TNF-α, IL-1β, and IL-6 (P<0.01), promoted the positive expression of CD206, and elevated the levels of IL-4 and IL-10 (P<0.01) in the hippocampus of the high dose group. Moreover, the high-dose Baihuan Xiaoyao decoction group had higher sucrose preference value (P<0.01), shorter immobility time (P<0.01), longer central distance (P<0.01), stronger learning and spatial memory (P<0.01), higher positive expression and protein level of iNOS (P<0.01), lower levels of TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), lower positive expression and mRNA level of iNOS (P<0.05), and higher levels of IL-4 and IL-10 (P<0.05, P<0.01) than the fluoxetine group. ConclusionBaihuan Xiaoyao decoction can improve the depression-like behavior of juvenile rats by inhibiting the M1 polarization and promoting the M2 polarization of microglia in the hippocampus.
4.Mesenchymal Stem-Like Cells Derived from the Ventricle More Effectively Enhance Invasiveness of Glioblastoma Than Those Derived from the Tumor
Junseong PARK ; Dongkyu LEE ; Jin-Kyoung SHIM ; Seon-Jin YOON ; Ju Hyung MOON ; Eui Hyun KIM ; Jong Hee CHANG ; Su-Jae LEE ; Seok-Gu KANG
Yonsei Medical Journal 2023;64(3):157-166
Purpose:
Glioblastoma (GBM) is one of the most lethal human tumors with a highly infiltrative phenotype. Our previous studies showed that GBM originates in the subventricular zone, and that tumor-derived mesenchymal stem-like cells (tMSLCs) promote the invasiveness of GBM tumorspheres (TSs). Here, we extend these studies in terms of ventricles using several types of GBM patient-derived cells.
Materials and Methods:
The invasiveness of GBM TSs and ventricle spheres (VSs) were quantified via collagen-based 3D invasion assays. Gene expression profiles were obtained from microarray data. A mouse orthotopic xenograft model was used for in vivo experiments.
Results:
After molecular and functional characterization of ventricle-derived mesenchymal stem-like cells (vMSLCs), we investigated the effects of these cells on the invasiveness of GBM TSs. We found that vMSLC-conditioned media (CM) significantly accelerated the invasiveness of GBM TSs and VSs, compared to the control and even tMSLC-CM. Transcriptome analyses revealed that vMSLC secreted significantly higher levels of several invasiveness-associated cytokines. Moreover, differentially expressed genes between vMSLCs and tMSLCs were enriched for migration, adhesion, and chemotaxis-related gene sets, providing a mechanistic basis for vMSLC-induced invasion of GBM TSs. In vivo experiments using a mouse orthotopic xenograft model confirmed vMSLCinduced increases in the invasiveness of GBM TSs.
Conclusion
Although vMSLCs are non-tumorigenic, this study adds to our understanding of how GBM cells acquire infiltrative features by vMSLCs, which are present in the region where GBM genesis originates.
5.Characteristics of Focused Ultrasound Mediated Blood-Brain Barrier Opening in Magnetic Resonance Images
Kyung Won CHANG ; Seung Woo HONG ; Won Seok CHANG ; Hyun Ho JUNG ; Jin Woo CHANG
Journal of Korean Neurosurgical Society 2023;66(2):172-182
Objective:
: The blood-brain barrier (BBB) is an obstacle for molecules to pass through from blood to the brain. Focused ultrasound is a new method which temporarily opens the BBB, which makes pharmaceutical delivery or removal of neurodegenerative proteins possible. This study was demonstrated to review our BBB opening procedure with magnetic resonance guided images and find specific patterns in the BBB opening.
Methods:
: In this study, we reviewed the procedures and results of two clinical studies on BBB opening using focused ultrasound regarding its safety and clinical efficacy. Magnetic resonance images were also reviewed to discover any specific findings.
Results:
: Two clinical trials showed clinical benefits. All clinical trials demonstrated safe BBB opening, with no specific side effects. Magnetic resonance imaging showed temporary T1 contrast enhancement in the sonication area, verifying the BBB opening. Several low-signal intensity spots were observed in the T2 susceptibility-weighted angiography images, which were also reversible and temporary. Although these spots can be considered as microbleeding, evidence suggests these are not ordinary microbleeding but an indicator for adequate BBB opening.
Conclusion
: Magnetic resonance images proved safe and efficient BBB opening in humans, using focused ultrasound.
6.Combined Effects of Focused Ultrasound and Photodynamic Treatment for Malignant Brain Tumors Using C6 Glioma Rat Model
Junwon PARK ; Chanho KONG ; Jaewoo SHIN ; Ji Young PARK ; Young Cheol NA ; Seung Hee HAN ; Jin Woo CHANG ; Seung Hyun SONG ; Won Seok CHANG
Yonsei Medical Journal 2023;64(4):233-242
Purpose:
Glioblastoma (GBM) is an intractable disease for which various treatments have been attempted, but with little effect.This study aimed to measure the effect of photodynamic therapy (PDT) and sonodynamic therapy (SDT), which are currently being used to treat brain tumors, as well as sono-photodynamic therapy (SPDT), which is the combination of these two.
Materials and Methods:
Four groups of Sprague-Dawley rats were injected with C6 glioma cells in a cortical region and treated with PDT, SDT, and SPDT. Gd-MRI was monitored weekly and 18F-FDG-PET the day before and 1 week after the treatment. The acoustic power used during sonication was 5.5 W/cm2 using a 0.5-MHz single-element transducer. The 633-nm laser was illuminated at 100 J/cm2 . Oxidative stress and apoptosis markers were evaluated 3 days after treatment using immunohistochemistry (IHC): 4-HNE, 8-OhdG, and Caspase-3.
Results:
A decrease in tumor volume was observed in MRI imaging 12 days after the treatment in the PDT group (p<0.05), but the SDT group showed a slight increase compared to the 5-Ala group. The high expression rates of reactive oxygen species-related factors, such as 8-OhdG (p<0.001) and Caspase-3 (p<0.001), were observed in the SPDT group compared to other groups in IHC.
Conclusion
Our findings show that light with sensitizers can inhibit GBM growth, but not ultrasound. Although SPDT did not show the combined effect in MRI, high oxidative stress was observed in IHC. Further studies are needed to investigate the safety parameters to apply ultrasound in GBM.
7.Activation of Cannabinoid Receptor 1 in GABAergic Neurons in the Rostral Anterior Insular Cortex Contributes to the Analgesia Following Common Peroneal Nerve Ligation.
Ming ZHANG ; Cong LI ; Qian XUE ; Chang-Bo LU ; Huan ZHAO ; Fan-Cheng MENG ; Ying ZHANG ; Sheng-Xi WU ; Yan ZHANG ; Hui XU
Neuroscience Bulletin 2023;39(9):1348-1362
The rostral agranular insular cortex (RAIC) has been associated with pain modulation. Although the endogenous cannabinoid system (eCB) has been shown to regulate chronic pain, the roles of eCBs in the RAIC remain elusive under the neuropathic pain state. Neuropathic pain was induced in C57BL/6 mice by common peroneal nerve (CPN) ligation. The roles of the eCB were tested in the RAIC of ligated CPN C57BL/6J mice, glutamatergic, or GABAergic neuron cannabinoid receptor 1 (CB1R) knockdown mice with the whole-cell patch-clamp and pain behavioral methods. The E/I ratio (amplitude ratio between mEPSCs and mIPSCs) was significantly increased in layer V pyramidal neurons of the RAIC in CPN-ligated mice. Depolarization-induced suppression of inhibition but not depolarization-induced suppression of excitation in RAIC layer V pyramidal neurons were significantly increased in CPN-ligated mice. The analgesic effect of ACEA (a CB1R agonist) was alleviated along with bilateral dorsolateral funiculus lesions, with the administration of AM251 (a CB1R antagonist), and in CB1R knockdown mice in GABAergic neurons, but not glutamatergic neurons of the RAIC. Our results suggest that CB1R activation reinforces the function of the descending pain inhibitory pathway via reducing the inhibition of glutamatergic layer V neurons by GABAergic neurons in the RAIC to induce an analgesic effect in neuropathic pain.
Mice
;
Animals
;
Insular Cortex
;
Peroneal Nerve
;
Mice, Inbred C57BL
;
Neuralgia
;
GABAergic Neurons
;
Analgesia
;
Analgesics
;
Receptors, Cannabinoid
8.METTL14 is a chromatin regulator independent of its RNA N6-methyladenosine methyltransferase activity.
Xiaoyang DOU ; Lulu HUANG ; Yu XIAO ; Chang LIU ; Yini LI ; Xinning ZHANG ; Lishan YU ; Ran ZHAO ; Lei YANG ; Chuan CHEN ; Xianbin YU ; Boyang GAO ; Meijie QI ; Yawei GAO ; Bin SHEN ; Shuying SUN ; Chuan HE ; Jun LIU
Protein & Cell 2023;14(9):683-697
METTL3 and METTL14 are two components that form the core heterodimer of the main RNA m6A methyltransferase complex (MTC) that installs m6A. Surprisingly, depletion of METTL3 or METTL14 displayed distinct effects on stemness maintenance of mouse embryonic stem cell (mESC). While comparable global hypo-methylation in RNA m6A was observed in Mettl3 or Mettl14 knockout mESCs, respectively. Mettl14 knockout led to a globally decreased nascent RNA synthesis, whereas Mettl3 depletion resulted in transcription upregulation, suggesting that METTL14 might possess an m6A-independent role in gene regulation. We found that METTL14 colocalizes with the repressive H3K27me3 modification. Mechanistically, METTL14, but not METTL3, binds H3K27me3 and recruits KDM6B to induce H3K27me3 demethylation independent of METTL3. Depletion of METTL14 thus led to a global increase in H3K27me3 level along with a global gene suppression. The effects of METTL14 on regulation of H3K27me3 is essential for the transition from self-renewal to differentiation of mESCs. This work reveals a regulatory mechanism on heterochromatin by METTL14 in a manner distinct from METTL3 and independently of m6A, and critically impacts transcriptional regulation, stemness maintenance, and differentiation of mESCs.
Animals
;
Mice
;
Methylation
;
Chromatin
;
Histones/metabolism*
;
RNA, Messenger/genetics*
;
Methyltransferases/metabolism*
;
RNA/metabolism*
9.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Cholesterol, LDL
;
Hyperplasia
;
Mice, Inbred C57BL
;
Atherosclerosis/genetics*
;
Apolipoproteins E/therapeutic use*
;
RNA, Messenger
10.EPCs-exos combined with tanshinone Ⅱ_A protect vascular endothelium cells from oxidative damage via PI3K/Akt pathway.
Lu MA ; Lei YANG ; Chang-Qing DENG ; Wei ZHANG ; Huang DING ; Xiao-Dan LIU ; Wan-Yu LI ; Jiang WEN ; Wei TAN ; Yan-Ling LI ; Yan-Yan ZHANG ; Xin-Ying FU ; Lin-Quan LIU ; Cai-Xia LIU ; Zhao-Wen ZENG
China Journal of Chinese Materia Medica 2023;48(23):6423-6433
This study aims to investigate the molecular mechanism of tanshinone Ⅱ_(A )(TaⅡ_A) combined with endothelial progenitor cells-derived exosomes(EPCs-exos) in protecting the aortic vascular endothelial cells(AVECs) from oxidative damage via the phosphatidylinositol 3 kinase(PI3K)/protein kinase B(Akt) pathway. The AVECs induced by 1-palmitoyl-2-(5'-oxovaleroyl)-sn-glycero-3-phosphocholine(POVPC) were randomly divided into model, TaⅡ_A, EPCs-exos, and TaⅡ_A+EPCs-exos groups, and the normal cells were taken as the control group. The cell counting kit-8(CCK-8) was used to examine the cell proliferation. The lactate dehydrogenase(LDH) cytotoxicity assay kit, Matrigel assay, DCFH-DA fluorescent probe, and laser confocal microscopy were employed to examine the LDH release, tube-forming ability, cellular reactive oxygen species(ROS) level, and endothelial cell skeleton morphology, respectively. The enzyme-linked immunosorbent assay was employed to measure the expression of interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α. Real-time fluorescence quantitative PCR(qRT-PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of PI3K and Akt. Compared with the control group, the model group showed decreased cell proliferation and tube-forming ability, increased LDH release, elevated ROS level, obvious cytoskeletal disruption, increased expression of IL-1β, IL-6, and TNF-α, and down-regulated mRNA and protein levels of PI3K and Akt. Compared with the model group, TaⅡ_A or EPCs-exos alone increased the cell proliferation and tube-forming ability, reduced LDH release, lowered the ROS level, repaired the damaged skeleton, decreased the expression of IL-1β, IL-6, and TNF-α, and up-regulated the mRNA and protein levels of PI3K and Akt. TaⅡ_A+EPCs-exos outperformed TaⅡ_A or EPCs-exos alone in regulating the above indexes. The results demonstrated that TaⅡ_A and EPCs-exos exerted a protective effect on POVPC-induced AVECs by activating the PI3K/Akt pathway, and the combination of the two had stronger therapeutic effect.
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Signal Transduction
;
Reactive Oxygen Species/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Endothelium, Vascular
;
Oxidative Stress
;
Endothelial Progenitor Cells
;
RNA, Messenger/metabolism*
;
Abietanes

Result Analysis
Print
Save
E-mail