1.GFAP-Positive Progenitor Cell Production is Concentrated in Specific Encephalic Regions in Young Adult Mice.
Zhibao GUO ; Yingying SU ; Huifang LOU
Neuroscience Bulletin 2018;34(5):769-778
		                        		
		                        			
		                        			Previous genetic fate-mapping studies have indicated that embryonic glial fibrillary acidic protein-positive (GFAP) cells are multifunctional progenitor/neural stem cells that can produce astrocytes as well as neurons and oligodendrocytes throughout the adult mouse central nervous system (CNS). However, emerging evidence from recent studies indicates that GFAP cells adopt different cell fates and generate different cell types in different regions. Moreover, the fate of GFAP cells in the young adult mouse CNS is not well understood. In the present study, hGFAP-Cre/R26R transgenic mice were used to investigate the lineage of embryonic GFAP cells in the young adult mouse CNS. At postnatal day 21, we found that GFAP cells mainly generated NeuN neurons in the cerebral cortex (both ventral and dorsal), hippocampus, and cerebellum. Strangely, these cells were negative for the Purkinje cell marker calbindin in the cerebellum and the neuronal marker NeuN in the thalamus. Thus, contrary to previous studies, our genetic fate-mapping revealed that the cell fate of embryonic GFAP cells at the young adult stage is significantly different from that at the adult stage.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Astrocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calbindins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glial Fibrillary Acidic Protein
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			Nerve Tissue Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Neural Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nuclear Proteins
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
2.VEGF enhances reconstruction of neurovascular units in the brain after injury.
Zhi-Guang PAN ; Ying MAO ; Feng-Yan SUN
Acta Physiologica Sinica 2017;69(1):96-108
		                        		
		                        			
		                        			Vascular endothelial growth factor (VEGF) was originally recognized as a substance predominantly with vascular permeability and angiogenesis. Recently, more and more evidence indicated that VEGF is expressed in the neurons of the developing and adult brains. Functional investigation demonstrated that VEGF shows several important effects on the neuronal development and physiological function. For example, VEGF accelerates the development of neurons and neural dendritic and axon growth. Besides, VEGF directly and acutely regulates the functions of multiple ion channels of the neuron membrane and changes neural excitability. In traumatic or ischemic injured brains, VEGF produces neuroprotection, enhances capacity of adult neurogenesis and transformation of astroglial cells into new neurons, which are fundamental basis for re-establishment of neural network. Based on the knowledge obtained from the literatures, we propose that VEGF may play very important roles in neural plasticity in the normal brain, and the reconstruction of neurovascular units and neural repair in the traumatic injured brain. This review mainly focuses on neural activity and repair roles of VEGF in adult mammalian brains. Further study on the mechanism of VEGF's neurobiological effects in the brain will be helpful for understanding the regulation of brain functions and developing new therapeutic strategy for prevention of neurodegeneration of the brain.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Astrocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Brain Injuries
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neurogenesis
		                        			;
		                        		
		                        			Neuronal Plasticity
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
3.Study on effect of huatuo zaizao extractum on focal cerebral ischemia/reperfusion neurogenesis in rats and its mechanisms.
Yong-Qiu ZHENG ; Lei LI ; Jian-Xun LIU ; Ming-Jiang YAO ; Sheng-Bo LIU ; Yan HU ; Jing-Xi SI
China Journal of Chinese Materia Medica 2014;39(5):891-895
OBJECTIVETo observe the effect of Huatuo Zaizao extractum (HTZZ) on focal cerebral ischemia/reperfusion (I/R) neurogenesis in rats induced by middle cerebral artery occlusion (MCAO) and its mechanism.
METHODTotally 55 healthy adult male Sprague-Dawley rats were divided into the sham operation group, the MCAO model group and HTZZ high, middle and low dose groups (5, 2.5, 1.25 g x kg(-1)), with 11 rats in each group, and orally administered with drugs. The focal cerebral ischemia model was established by performing a middle cerebral artery occlusion (MCAO, 90 min) followed by a seven-day reperfusion (once a day). The neurogenesis and expressions of extracellular signal-regulated kinase (ERK) and cAMP response element binding protein (CREB) were detected by the immunofluorescent staining. The enzyme linked immunosorbent assay (ELISA) was adopted to determine the vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF).
RESULTMCAO (90 min) followed by a seven-day reperfusion resulted in the significant increase in the number of penumbra cortex newborn neurons (BrdU(+) -NeuN(+)), which was accompanied by the growth of ERK and CREB phosphorylation and VEGF and BDNF levels. HTZZ could promote the generation of newborn neurons (BrdU(+)-NeuN(+)) and the ERK and CREB phosphorylation and increase VEGF and BDNF levels at the ischemic side.
CONCLUSIONHTZZ could promote the neurogenesis, which may be the interventional targets of effective traditional Chinese medicine Huatuo Zaizao extractum in promoting the self-repair function of the cerebral ischemic areas.
Animals ; Brain Ischemia ; drug therapy ; genetics ; metabolism ; physiopathology ; Brain-Derived Neurotrophic Factor ; genetics ; metabolism ; Drugs, Chinese Herbal ; administration & dosage ; Humans ; Male ; Neurogenesis ; drug effects ; Neurons ; cytology ; drug effects ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reperfusion ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
4.Effect of basic fibroblast growth factor on endogenous neural stem cell in rat cerebral cortex with global cerebral ischemia-reperfusion.
Mingxin REN ; Xiaohui DENG ; Yiwei GUO ; Fengjin ZHENG ; Zhibo FENG
Journal of Biomedical Engineering 2014;31(4):846-849
		                        		
		                        			
		                        			The present paper is aimedto investigate the effect of basic fibroblast growth factor (bFGF) on proliferation, migration and differentiation of endogenous neural stem cell in rat cerebral cortex with global brain ischemia-reperfusion. A global brain ischemia-reperfusion model was established. Immunohistochemistry was used to observe the pathological changes and the expression of BrdU and Nestin in cerebral cortex. RT-PCR was used to measure the NSE mRNA in brain tissue. The results of measurements indicated that in sham operation group, there was no positive cell in cerebral cortex, and the content of NSE mRNA did not change. In the operation group, the expression of BrdU and Nestin increased significantly at the end of the 3rd day, and peaked on the 7th day. NSE mRNA expression did not significantly increase. In bFGF group, compared with sham operation group and model group, the number of BrdU-positive and Nestin-positive cells increased significantly at each time point (P<0. 05), and peaked at the end of the 11th day, and the content of NSE mRNA increased significantly (P<0. 05). This research demonstrated that the proliferation of endogenous neural stem cells in situ could be induced by global cerebral ischemia and reperfu- sion, and could be promoted and extended by bFGF. In additiion, bFGF might promote endogenous neural stem cells differentiated into neurons.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Brain Ischemia
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cerebral Cortex
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Fibroblast Growth Factor 2
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Nestin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Neural Stem Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			
		                        		
		                        	
5.Voluntary wheel running enhances cell proliferation and expression levels of BDNF, IGF1 and WNT4 in dentate gyrus of adult mice.
Jia-Ling YU ; Li MA ; Lan MA ; Ye-Zheng TAO
Acta Physiologica Sinica 2014;66(5):559-568
		                        		
		                        			
		                        			Adult hippocampal neurogenesis plays important roles in learning, memory and mood regulation. External factors, such as physical exercise, have been found to modulate adult hippocampal neurogenesis. Voluntary running enhances cell proliferation in subgranular zone (SGZ) and increases the number of new born neurons in rodents, but underlying mechanisms are not fully understood. In this study, we used BrdU assay to identify proliferating cells in 2-month-old C57BL/6 mice after 15 days of voluntary wheel running test. mRNA and protein levels for several neural factors in dentate gyrus, Ammon's horn, and cortex were also analyzed by RT-qPCR and Western blot assay after 15 days of voluntary wheel running. Our data show that voluntary wheel running for 15 days elevated the number of proliferation cells in dentate gyrus and significantly up-regulated the mRNA levels of Bdnf, Igf1 and Wnt4. The protein levels of BDNF and IGF1 in dentate gyrus were also increased after voluntary wheel running. These results indicate that the increase of adult hippocampal neurogenesis caused by voluntary wheel running for 15 days might be through up-regulating BDNF, IGF1 and WNT4 in dentate gyrus.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Brain-Derived Neurotrophic Factor
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Dentate Gyrus
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Insulin-Like Growth Factor I
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Motor Activity
		                        			;
		                        		
		                        			Neurogenesis
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Wnt4 Protein
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
6.Cell culture and identification of pericytes in rat brain.
Qiang LI ; Wen-yan LI ; Bo LI ; Yu-xing HUANG ; An-yong YU ; Hong-fei GE ; Yun-feng YANG ; Rong HU ; Huai-zhen RUAN ; Guo-cai WU ; Wei-hua TANG ; Hua FENG
Chinese Journal of Pathology 2013;42(8):551-553
7.Increased leakage of brain antigens after traumatic brain injury and effect of immune tolerance induced by cells on traumatic brain injury.
Hua YAN ; Hong-Wei ZHANG ; Qiao-Li WU ; Guo-Bin ZHANG ; Kui LIU ; Da-Shi ZHI ; Zhen-Bo HU ; Xian-Wei ZENG
Chinese Medical Journal 2012;125(9):1618-1626
BACKGROUNDAlthough traumatic brain injury can lead to opening the blood-brain barrier and leaking of blood substances (including water) into brain tissue, few studies of brain antigens leaking into the blood and the pathways have been reported. Brain antigens result in damage to brain tissues by stimulating the immune system to produce anti-brain antibodies, but no treatment has been reported to reduce the production of anti-brain antibodies and protect the brain tissue. The aim of the study is to confirm the relationship between immune injury and arachnoid granulations following traumatic brain injury, and provide some new methods to inhibit the immune injury.
METHODSIn part one, methylene blue was injected into the rabbits' cisterna magna after traumatic brain injury, and concentrations of methylene blue and tumor necrosis factor (TNF)-α in blood were detected to determine the permeability of arachnoid granulations. In part two, umbilical cord mesenchymal stem cells and immature dendritic cells were injected into veins, and concentrations of interleukin 1 (IL-1), IL-10, interferon (IFN)-γ, transforming growth factor (TGF)-β, anti-brain antibodies (ABAb), and IL-12 were measured by ELISA on days 1, 3, 7, 14 and 21 after injury, and the numbers of leukocytes in the blood were counted. Twenty-one days after injury, expression of glutamate in brain tissue was determined by immunohistochemical staining, and neuronal degeneration was detected by H&E staining.
RESULTSIn part one, blood concentrations of methylene blue and TNF-α in the traumatic brain injury group were higher than in the control group (P < 0.05). Concentrations of methylene blue and TNF-α in the trauma cerebrospinal fluid (CSF) injected group were higher than in the control cerebrospinal fluid injected group (P < 0.05). In part two, concentrations of IL-1, IFN-γ, ABAb, IL-12, expression of glutamate (Glu), neuronal degeneration and number of peripheral blood leukocytes were lower in the group with cell treatment compared to the control group. IL-10 and TGF-β were elevated compared to the control group.
CONCLUSIONSTraumatic brain injury can lead to stronger arachnoid granulations (AGs) permeability; umbilical cord mesenchymal stem cells and immature dendritic cells can induce immune tolerance and reduce inflammation and anti-brain antibodies to protect the brain tissue.
Adipocytes ; cytology ; Animals ; Antigens ; blood ; metabolism ; Brain Injuries ; blood ; cerebrospinal fluid ; metabolism ; Cell Differentiation ; physiology ; Cells, Cultured ; Dendritic Cells ; metabolism ; Enzyme-Linked Immunosorbent Assay ; Interleukin-1 ; blood ; cerebrospinal fluid ; Interleukin-10 ; blood ; cerebrospinal fluid ; Interleukin-12 ; blood ; cerebrospinal fluid ; Mesenchymal Stromal Cells ; cytology ; Methylene Blue ; metabolism ; Osteoblasts ; cytology ; Rabbits ; Transforming Growth Factor beta ; blood ; cerebrospinal fluid ; Tumor Necrosis Factor-alpha ; blood ; cerebrospinal fluid
8.Fate of Transplanted Bone Marrow Derived Mesenchymal Stem Cells Following Spinal Cord Injury in Rats by Transplantation Routes.
Eun Sun KANG ; Kee Yong HA ; Young Hoon KIM
Journal of Korean Medical Science 2012;27(6):586-593
		                        		
		                        			
		                        			This research was performed to investigate the differences of the transplanted cells' survival and differentiation, and its efficacy according to the delivery routes following spinal cord injury. Allogenic mesenchymal stem cells (MSCs) were transplanted intravenously (IV group) or intralesionally (IL group) at post-injury 1 day in rats. Behavioral improvement, engraftment and differentiation of the transplanted cells and the expression of neurotrophic factors of the transplanted groups were analyzed and compared with those of the control group. At 6 weeks post-injury, the mean BBB motor scales in the control, IV and IL groups were 6.5 +/- 1.8, 11.1 +/- 2.1, and 8.5 +/- 2.8, respectively. Regardless of the delivery route, the MSCs transplantation following spinal cord injuries presented better behavioral improvement. The differentiations of the engrafted cells were different according to the delivery routes. The engrafted cells predominantly differentiated into astrocytes in the IV group and on the other hand, engrafted cells of the IL group demonstrated relatively even neural and glial differentiation. The expressions of neuronal growth factor were significantly higher in the IL group (mean relative optical density, 2.4 +/- 0.15) than those in the control (2.16 +/- 0.04) or IV group (1.7 +/- 0.23). Transplantation of MSCs in the early stage of spinal cord injury gives a significant clinical improvement. However, the fate of the transplanted MSCs and expression of neuronal growth factors are different along the transplantation route.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Behavior, Animal
		                        			;
		                        		
		                        			Bone Marrow Cells/*cytology
		                        			;
		                        		
		                        			Brain-Derived Neurotrophic Factor/metabolism
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Drug Administration Routes
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mesenchymal Stem Cell Transplantation
		                        			;
		                        		
		                        			Mesenchymal Stromal Cells/*cytology
		                        			;
		                        		
		                        			Nerve Growth Factor/metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Spinal Cord Injuries/*therapy
		                        			;
		                        		
		                        			Transplantation, Homologous
		                        			
		                        		
		                        	
9.Neuronal stem cells in the central nervous system and in human diseases.
Protein & Cell 2012;3(4):262-270
		                        		
		                        			
		                        			The process of cortical expansion in the central nervous system is a key step of mammalian brain development to ensure its physiological function. Radial glial (RG) cells are a glial cell type contributing to this progress as intermediate neural progenitor cells responsible for an increase in the number of cortical neurons. In this review, we discuss the current understanding of RG cells during neurogenesis and provide further information on the mechanisms of neurodevelopmental diseases and stem cell-related brain tumorigenesis. Knowledge of neuronal stem cell and relative diseases will bridge benchmark research through translational studies to clinical therapeutic treatments of these diseases.
		                        		
		                        		
		                        		
		                        			Biomarkers, Tumor
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Brain Neoplasms
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Glioma
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Intercellular Signaling Peptides and Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lissencephaly
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Microcephaly
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Neoplastic Stem Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Neurogenesis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Neuroglia
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Kinase Inhibitors
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
10.Platelet-derived growth factor receptor alpha in glioma: a bad seed.
Kun-Wei LIU ; Bo HU ; Shi-Yuan CHENG
Chinese Journal of Cancer 2011;30(9):590-602
		                        		
		                        			
		                        			Recent collaborative, large-scale genomic profiling of the most common and aggressive brain tumor glioblastoma multiforme(GBM) has significantly advanced our understanding of this disease. The gene encoding platelet-derived growth factor receptor alpha(PDGFRα) was identified as the third of the top 11 amplified genes in clinical GBM specimens. The important roles of PDGFRα signaling during normal brain development also implicate the possible pathologic consequences of PDGFRα over-activation in glioma. Although the initial clinical trials using PDGFR kinase inhibitors have been predominantly disappointing, diagnostic and treatment modalities involving genomic profiling and personalized medicine are expected to improve the therapy targeting PDGFRα signaling. In this review, we discuss the roles of PDGFRαsignaling during development of the normal central nervous system(CNS) and in pathologic conditions such as malignant glioma. We further compare various animal models of PDGF-induced gliomagenesis and their potential as a novel platform of pre-clinical drug testing. We then summarize our recent publication and how these findings will likely impact treatments for gliomas driven by PDGFRα overexpression. A better understanding of PDGFRα signaling in glioma and their microenvironment, through the use of human or mouse models, is necessary to design a more effective therapeutic strategy against gliomas harboring the aberrant PDGFRα signaling.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Autocrine Communication
		                        			;
		                        		
		                        			Brain Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Central Nervous System
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			embryology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Glioblastoma
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Glioma
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Kinase Inhibitors
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Receptor, Platelet-Derived Growth Factor alpha
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail