1.Isolation and identification of pathogen of Dendrobium officinale gray mold and its prevention and control.
Jing-Mao YOU ; Jie GUO ; Zhe LI ; Qin YANG ; Yuan-Yuan DUAN ; Xiao-Liang GUO ; Da-Ye HUANG ; Zhuang-Ling ZOU ; Han-Jiu GUO
China Journal of Chinese Materia Medica 2019;44(18):3954-3959
Through investigation,it was found that the main disease of leaves was grey mold on Dendrobium officinale in Hubei province,which has a great impact on the yield and quality of D. officinale. The identification of morphological and molecular biological was used to prove that the pathogen was Botrytis cinerea. Through test the effect of 5 plant source fungicides and 4 antibiotic fungicides on mycelial growth of strain HS1,which proved 0. 3% eugenol had the best inhibitory effect,EC50 was 0. 29 mg·L-1,the second was1% osthol and EC50 was 1. 12 mg·L-1,the EC50 of 0. 5% matrine was 9. 16 mg·L-1,the EC50 of the other six fungicides was higher than 10 mg·L-1. The field control effect test proved that 0. 3% eugenol had the best control effect,reaching 89. 44%,secondly for 1%osthole,which was 77. 17%,0. 5% matrine was in the third place with 62. 37% of effective rate. However,the control effect of the other fungicides was less than 60%. The three plant-derived fungicides were safe for the produce of D. officinale and showed no phytotoxicity. The effect of these fungicides on the growth of D. candidum was tested,and proved that all the fungicides were safe and harmless to D. candidum. This study provides a research basis for the safe and effective prevention and control gray mold of D. officinale.
Alkaloids
;
Botrytis/pathogenicity*
;
Coumarins
;
Dendrobium/microbiology*
;
Eugenol
;
Fungicides, Industrial
;
Plant Diseases/prevention & control*
;
Plant Leaves/microbiology*
;
Quinolizines
;
Matrines
2.The Major Postharvest Disease of Onion and Its Control with Thymol Fumigation During Low-Temperature Storage.
Sang Hye JI ; Tae Kwang KIM ; Young Soo KEUM ; Se Chul CHUN
Mycobiology 2018;46(3):242-253
Onion (Allium cepa L.) is one of the major vegetable crops in Korea that are damaged and lost by pathogenic fungal infection during storage due to a lack of proper storage conditions. The aim of this study was to determine an appropriate control measure using thymol to increase the shelf life of onions. To control fungal infections that occur during low-temperature storage, it is necessary to identify the predominant fungal pathogens that appear in low-temperature storage houses. Botrytis aclada was found to be the most predominant fungal pathogen during low-temperature storage. The antifungal activity of the plant essential oil thymol was tested and compared to that of the existing sulfur treatments. B. aclada growth was significantly inhibited up to 16 weeks with spray treatments using a thymol solution. To identify an appropriate method for treating onions in a low-temperature storage house, thymol was delivered by two fumigation treatment methods, either by heating it in the granule form or as a solution at low-temperature storage conditions (in vivo). We confirmed that the disease severity was reduced up to 96% by fumigating thymol solution compared to the untreated control. The efficacy of the fumigation of thymol solution was validated by testing onions in a low-temperature storage house in Muan, Jeollanam-do. Based on these results, the present study suggests that fumigation of the thymol solution as a natural preservative and fungicide can be used as an eco-friendly substitute for existing methods to control postharvest disease in long-term storage crops on a commercial scale.
Botrytis
;
Fumigation*
;
Heating
;
Hot Temperature
;
Jeollanam-do
;
Korea
;
Methods
;
Onions*
;
Plants
;
Sulfur
;
Thymol*
;
Vegetables
3.Screening and Evaluation of Yeast Antagonists for Biological Control of Botrytis cinerea on Strawberry Fruits.
Pei Hua CHEN ; Rou Yun CHEN ; Jui Yu CHOU
Mycobiology 2018;46(1):33-46
Gray mold (Botrytis cinerea) is one of the most common diseases of strawberries (Fragaria × ananassa Duchesne) worldwide. Although many chemical fungicides are used for controlling the growth of B. cinerea, the risk of the fungus developing chemical resistance together with consumer demand for reducing the use of chemical fungicides have necessitated an alternative method to control this pathogen. Various naturally occurring microbes aggressively attack plant pathogens and benefit plants by suppressing diseases; these microbes are referred to as biocontrol agents. However, screening of potent biocontrol agents is essential for their further development and commercialization. In this study, 24 strains of yeast with antagonistic ability against gray mold were isolated, and the antifungal activity of the volatile and diffusible metabolites was evaluated. Putative mechanisms of action associated with the biocontrol capacity of yeast strains against B. cinerea were studied through in vitro and in vivo assays. The volatile organic compounds produced by the Galactomyces candidum JYC1146 could be useful in the biological control of plant pathogens and therefore are potential alternative fungicides with low environmental impact.
Botrytis*
;
Fragaria*
;
Fruit*
;
Fungi
;
In Vitro Techniques
;
Mass Screening*
;
Methods
;
Plants
;
Volatile Organic Compounds
;
Yeasts*
4.Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea.
Hwi Geon YUN ; Dong Jun KIM ; Won Seok GWAK ; Tae Young SHIN ; Soo Dong WOO
Mycobiology 2017;45(3):192-198
The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.
Aphids*
;
Beauveria
;
Botrytis*
;
Colon
;
Crop Protection
;
Farmers
;
Fruit
;
Fungi*
;
Insecticides
;
Metarhizium
;
Plants
;
Prunus persica
;
Rhizosphere
;
Spores, Fungal
;
Vegetables
;
Virulence
5.Antifungical Activity of Autochthonous Bacillus subtilis Isolated from Prosopis juliflora against Phytopathogenic Fungi.
Ali ABDELMOTELEB ; Rosalba TRONCOSO-ROJAS ; Tania GONZALEZ-SOTO ; Daniel GONZÁLEZ-MENDOZA
Mycobiology 2017;45(4):385-391
The ability of Bacillus subtilis, strain ALICA to produce three mycolytic enzymes (chitinase, β-1,3-glucanase, and protease), was carried out by the chemical standard methods. Bacillus subtilis ALICA was screened based on their antifungal activity in dual plate assay and cell-free culture filtrate (25%) against five different phytopathogenic fungi Alternaria alternata, Macrophomina sp., Colletotrichum gloeosporioides, Botrytis cinerea, and Sclerotium rolfesii. The B. subtilis ALICA detected positive for chitinase, β-1,3-glucanase and protease enzymes. Fungal growth inhibition by both strain ALICA and its cell-free culture filtrate ranged from 51.36% to 86.3% and 38.43% to 68.6%, respectively. Moreover, hyphal morphological changes like damage, broken, swelling, distortions abnormal morphology were observed. Genes expression of protease, β-1,3-glucanase, and lipopeptides (subtilosin and subtilisin) were confirmed their presence in the supernatant of strain ALICA. Our findings indicated that strain ALICA provided a broad spectrum of antifungal activities against various phytopathogenic fungi and may be a potential effective alternative to chemical fungicides.
Alternaria
;
Bacillus subtilis*
;
Bacillus*
;
Botrytis
;
Chitinase
;
Colletotrichum
;
Fungi*
;
Lipopeptides
;
Prosopis*
6.Orthologous Allergens and Diagnostic Utility of Major Allergen Alt a 1.
Antonio MORENO ; Fernando PINEDA ; Javier ALCOVER ; David RODRÍGUEZ ; Ricardo PALACIOS ; Eduardo MARTÍNEZ-NAVES
Allergy, Asthma & Immunology Research 2016;8(5):428-437
PURPOSE: Hypersensitivity to fungi is associated with rhinoconjunctivitis and asthma. For some fungi, such as Alternaria alternata (A. alternata), the symptoms of asthma are persistent, increasing disease severity and the risk of fatal outcomes. There are a large number of species of fungi but knowledge of them remains limited. This, together with the difficulties in obtaining adequate standardized extracts, means that there remain significant challenges in the diagnosis and immunotherapy of allergy associated with fungi. The type of indoor fungi related to asthma/allergy varies according to geographic, climatic, and seasonal factors, making their study difficult. The aim of this study was to determine hypersensitivity to indoor fungi in a population from Cuenca, Spain. METHODS: Thirty-five patients with symptoms compatible with rhinitis or asthma who showed clear worsening of their symptoms in their homes or workplace were included. In vivo and in vitro tests were made with a battery of fungal allergens, including the species isolated in the home or workplace. RESULTS: Ulocladium botrytis (U. botrytis) and A. alternata were the most representative species as a source of home sensitization. These species showed very high concordance in skin tests, specific IgE, and histamine release. The allergen Alt a 1, which was recognized in all patients, was detected in A. alternata, U. botrytis, and Stemphylium botryosum (S. botryosum). CONCLUSIONS: U. botrytis and A. alternata were the most representative species as a source of home sensitization. Alt a 1 was recognized in all patients and may be considered a non-species-specific allergen that could be used as a diagnostic source of sensitization to some species of the Pleosporaceae family.
Allergens*
;
Alternaria
;
Asthma
;
Botrytis
;
Diagnosis
;
Fatal Outcome
;
Fungi
;
Histamine Release
;
Humans
;
Hypersensitivity
;
Immunoglobulin E
;
Immunotherapy
;
In Vitro Techniques
;
Rhinitis
;
Seasons
;
Skin Tests
;
Spain
7.Fructose promotes growth and antifungal activity of Penicillium citrinum.
Chang-Wen WU ; Xiaojun WU ; Chao WEN ; Bo PENG ; Xuan-Xian PENG ; Xinhua CHEN ; Hui LI
Protein & Cell 2016;7(7):527-532
8.Research of chemotaxis response of Botrytis cinerea and Alternaria panax on total ginsenosides.
Kun CHI ; Yong-hua XU ; Feng-jie LEI ; Min-jing YIN ; Zhuang WANG ; Ai-hua ZHANG ; Lian-xue ZHANG
China Journal of Chinese Materia Medica 2015;40(19):3742-3747
In this paper, three kinds of chemotactic parameters (concentration, temperature and pH) were determined by plate assay and spore germination method to research the chemotactic response of Botrytis cinerea and Alternaria panax, and their spores on total ginsenosides. The results showed that Botrytis cinerea had strong chemotactic response at the mid-concentration of total ginsenosides (cultivation temperature was 20 degrees C and pH value was 6), and the data of chemotactic migration index (CMI) was 1.293 0, chemotactic growth rate (CGR) was 0.476 0, spore germination rate (SGR) was 53%, and dry weight of mycelial (DWM) was 0.452 6 g x L(-1); however, Alternaria panax had strong chemotactic response at the low-concentration of total ginsenosides (cultivation temperature was 25 degrees C and pH value was 6), and the data of chemotactic migration index (CMI) was 1.235 4, chemotactic growth rate (CGR) was 0.537 0, spore germination rate (SGR) was 67%, and dry weight of mycelial (DWM) was 0.494 8 g x L(-1). The results indicated that the low and middle concentration (2, 20 mg x L(-1)) of total ginsenosides had significant promoting effect on chemotactic response of these two pathogens, and the spore germination, mycelial growth rate, dry weight of mycelial of them were also significantly improved by this chemotactic response, whereas it decreased as the increase of total ginsenosides concentration.
Alternaria
;
drug effects
;
growth & development
;
physiology
;
Botrytis
;
drug effects
;
growth & development
;
physiology
;
Chemotaxis
;
drug effects
;
Drugs, Chinese Herbal
;
metabolism
;
pharmacology
;
Ginsenosides
;
metabolism
;
pharmacology
;
Panax
;
metabolism
;
microbiology
;
Plant Diseases
;
microbiology
;
Spores, Fungal
;
drug effects
;
growth & development
;
physiology
9.Antagonistic Effect of Streptomyces sp. BS062 against Botrytis Diseases.
Young Sook KIM ; In Kyoung LEE ; Bong Sik YUN
Mycobiology 2015;43(3):339-342
The use of microorganisms and their secreted molecules to prevent plant diseases is considered an attractive alternative and way to supplement synthetic fungicides for the management of plant diseases. Strain BS062 was selected based on its ability to inhibit the mycelial growth of Botrytis cinerea, a major causal fungus of postharvest root rot of ginseng and strawberry gray mold disease. Strain BS062 was found to be closely related to Streptomyces hygroscopicus (99% similarity) on the basis of 16S ribosomal DNA sequence analysis. Postharvest root rot of ginseng and strawberry gray mold disease caused by B. cinerea were controlled up to 73.9% and 58%, respectively, upon treatment with culture broth of Streptomyces sp. BS062. These results suggest that strain BS062 may be a potential agent for controlling ginseng postharvest root rot and strawberry gray mold disease.
Botrytis*
;
DNA, Ribosomal
;
Fragaria
;
Fungi
;
Panax
;
Plant Diseases
;
Sequence Analysis
;
Streptomyces*
10.Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi.
Nguyen VAN MINH ; E Eum WOO ; Ji Yul KIM ; Dae Won KIM ; Byung Soon HWANG ; Yoon Ju LEE ; In Kyoung LEE ; Bong Sik YUN
Mycobiology 2015;43(3):333-338
In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria.
Bacteria
;
Botrytis
;
Chromatography
;
Chromatography, Liquid
;
Colletotrichum
;
Fungi*
;
Panax
;
Plants*
;
Rhizoctonia
;
Streptomyces*

Result Analysis
Print
Save
E-mail