1.Application of gelatin microspheres in bone tissue engineering.
Yuanhang ZHAI ; Jing LI ; Abudukahaer ABUDUAINI ; Zijiao YANG ; Zhiruo YU ; Yixuan CHEN ; Hao LIU ; Xin RONG
Chinese Journal of Biotechnology 2023;39(9):3724-3737
Gelatin microspheres were discussed as a scaffold material for bone tissue engineering, with the advantages of its porosity, biodegradability, biocompatibility, and biosafety highlighted. This review discusses how bone regeneration is aided by the three fundamental components of bone tissue engineering-seed cells, bioactive substances, and scaffold materials-and how gelatin microspheres can be employed for in vitro seed cell cultivation to ensure efficient expansion. This review also points out that gelatin microspheres are advantageous as drug delivery systems because of their multifunctional nature, which slows drug release and improves overall effectiveness. Although gelatin microspheres are useful for bone tissue creation, the scaffolds that take into account their porous structure and mechanical characteristics might be difficult to be created. This review then discusses typical techniques for creating gelatin microspheres, their recent application in bone tissue engineering, as well as possible future research directions.
Tissue Engineering/methods*
;
Tissue Scaffolds/chemistry*
;
Gelatin/chemistry*
;
Microspheres
;
Bone and Bones
;
Porosity
2.Research progress in influence of microstructure on performance of triply-periodic minimal surface bone scaffolds.
Yadi SUN ; Jianxiong MA ; Yan WANG ; Benchao DONG ; Peichuan YANG ; Yan LI ; Yiyang LI ; Liyun ZHOU ; Jiahui SHEN ; Xinlong MA
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1314-1318
OBJECTIVE:
To summarize the influence of microstructure on performance of triply-periodic minimal surface (TPMS) bone scaffolds.
METHODS:
The relevant literature on the microstructure of TPMS bone scaffolds both domestically and internationally in recent years was widely reviewed, and the research progress in the imfluence of microstructure on the performance of bone scaffolds was summarized.
RESULTS:
The microstructure characteristics of TPMS bone scaffolds, such as pore shape, porosity, pore size, curvature, specific surface area, and tortuosity, exert a profound influence on bone scaffold performance. By finely adjusting the above parameters, it becomes feasible to substantially optimize the structural mechanical characteristics of the scaffold, thereby effectively preempting the occurrence of stress shielding phenomena. Concurrently, the manipulation of these parameters can also optimize the scaffold's biological performance, facilitating cell adhesion, proliferation, and growth, while facilitating the ingrowth and permeation of bone tissue. Ultimately, the ideal bone fusion results will obtain.
CONCLUSION
The microstructure significantly and substantially influences the performance of TPMS bone scaffolds. By deeply exploring the characteristics of these microstructure effects on the performance of bone scaffolds, the design of bone scaffolds can be further optimized to better match specific implantation regions.
Tissue Scaffolds/chemistry*
;
Tissue Engineering/methods*
;
Bone and Bones
;
Porosity
3.Research, development and application of collagen: a review.
Tao YE ; Qi XIANG ; Yan YANG ; Yadong HUANG
Chinese Journal of Biotechnology 2023;39(3):942-960
Collagen, which widely exists in skin, bone, muscle and other tissues, is a major structural protein in mammalian extracellular matrix. It participates in cell proliferation, differentiation, migration and signal transmission, plays an important role in tissue support and repair and exerts a protective effect. Collagen is widely used in tissue engineering, clinical medicine, food industry, packaging materials, cosmetics and medical beauty due to its good biological characteristics. This paper reviews the biological characteristics of collagen and its application in bioengineering research and development in recent years. Finally, we prospect the future application of collagen as a biomimetic material.
Animals
;
Collagen/analysis*
;
Tissue Engineering/methods*
;
Extracellular Matrix/metabolism*
;
Biomimetic Materials/chemistry*
;
Bone and Bones
;
Tissue Scaffolds
;
Mammals/metabolism*
4.Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
Wen-Ming PENG ; Yun-Feng LIU ; Xian-Feng JIANG ; Xing-Tao DONG ; Janice JUN ; Dale A BAUR ; Jia-Jie XU ; Hui PAN ; Xu XU
Journal of Zhejiang University. Science. B 2019;20(8):647-659
In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of "reducing dimensions and designing layer by layer" was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%, (480±28) to (685±31) μm, and (263±28) to (265±28) μm, respectively. The compression results show that the Young's modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young's modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.
Alloys
;
Bionics
;
Bone Substitutes/chemistry*
;
Bone and Bones/pathology*
;
Compressive Strength
;
Elastic Modulus
;
Finite Element Analysis
;
Humans
;
Lasers
;
Materials Testing
;
Maxillofacial Prosthesis Implantation
;
Porosity
;
Pressure
;
Printing, Three-Dimensional
;
Prostheses and Implants
;
Prosthesis Design
;
Stress, Mechanical
;
Surgery, Oral/instrumentation*
;
Tissue Engineering/methods*
;
Titanium/chemistry*
5.Comparison of T-2 Toxin and HT-2 Toxin Distributed in the Skeletal System with That in Other Tissues of Rats by Acute Toxicity Test.
Fang Fang YU ; Xia Lu LIN ; Lei YANG ; Huan LIU ; Xi WANG ; Hua FANG ; ZMikko J LAMMI ; Xiong GUO
Biomedical and Environmental Sciences 2017;30(11):851-854
Twelve healthy rats were divided into the T-2 toxin group receiving gavage of 1 mg/kg T-2 toxin and the control group receiving gavage of normal saline. Total relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system (thighbone, knee joints, and costal cartilage) were significantly higher than those in the heart, liver, and kidneys (P < 0.05). The relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system (thighbone and costal cartilage) were also significantly higher than those in the heart, liver, and kidneys. The rats administered T-2 toxin showed rapid metabolism compared with that in rats administered HT-2 toxin, and the metabolic conversion rates in the different tissues were 68.20%-90.70%.
Animals
;
Bone and Bones
;
chemistry
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
T-2 Toxin
;
analogs & derivatives
;
pharmacokinetics
;
toxicity
;
Tissue Distribution
;
Toxicity Tests, Acute
6.Application of mechanically reinforced 45S5 Bioglass®-derived bioactive glass-ceramic porous scaffolds for bone defect repairing in rabbits.
Lifeng CHEN ; Xianyan YANG ; Rui MA ; Linghua ZHU
Journal of Zhejiang University. Medical sciences 2017;46(6):600-608
Objective: To evaluate the application of mechanically reinforced 45S5 Bioglass®-derived glass ceramic porous scaffolds for repair of bone defect in rabbits. Methods: The BG-ZnB powders were added into the 45S5 Bioglass® powder/paraffin microsphere mixtures and were sintered at 900℃ to obtain porous scaffolds with highly bioactive BG-ZnB of 0%, 2% or 4% of mass fraction (denoted as 45S5/ZnB0, 45S5/ZnB2, 45S5/ZnB4). Phase composition, porosity and compression properties of three kinds of as-sintered scaffolds were characterized by X-ray analysis, mercury porosimetry, and mechanical test. Thirty-six male New Zealand rabbits with critical-sized femoral bone defects were randomly divided into three groups (45S5/ZnB0 group, 45S5/ZnB2 group and 45S5/ZnB4 group, 12 for each), and were implanted with three kinds of porous scaffolds respectively. X-ray, micro-CT three-dimensional reconstruction and tissue slice staining were used to detected the efficiency of bone regeneration at 6 and 16 weeks after operation. The growth of newly formed bone was observed using HE, Masson staining and EnVision method. Results: Phase compositions of 45S5/ZnB2 and 45S5/ZnB4 were the same with 45S5/ZnB0, but the average pore size and porosity of the scaffolds were decreased with the increase of BG-ZnB content. 45S5/ZnB2 and 45S5/ZnB4 scaffolds exhibited higher compressive strength, osteogenesis and trabecular density than those of the 45S5/ZnB0 scaffold (all P<0.05). With the mechanical reinforcement of BG-ZnB increased, the content of new bone, collagen type I and osteocalcin increased. Conclusion: Low-melt BG-ZnB-assisted sintering is a promising approach to improve the mechanical strength of 45S5 Bioglass®.
Animals
;
Bone and Bones
;
drug effects
;
physiology
;
Ceramics
;
chemistry
;
Glass
;
Male
;
Porosity
;
Rabbits
;
Tissue Scaffolds
;
chemistry
7.Bone Scintigraphy in the Diagnosis of Rheumatoid Arthritis: Is There Additional Value of Bone Scintigraphy with Blood Pool Phase over Conventional Bone Scintigraphy?.
Ji Young KIM ; Yun Young CHOI ; Chan Woo KIM ; Yoon Kyoung SUNG ; Dae Hyun YOO
Journal of Korean Medical Science 2016;31(4):502-509
We aimed to investigate the value of bone scintigraphy with additional blood pool phase (BSBP), compared with conventional bone scintigraphy (CBS), in the assessment of rheumatoid arthritis (RA). A total of 242 patients (43 males, 199 females; 14-78 years) with arthralgia, and underwent BSBP were retrospectively analyzed. On the first physical examination, active arthritis was found in 128 of the 242 patients. Clinical diagnosis was made by a rheumatologist on the basis of the 1987 American College of Rheumatology (ACR) criteria, which are considered to be the gold standard. The diagnostic performances and prognostic value of BSBP and CBS were analyzed in the total patients with arthralgia and in the patients with arthritis. The sensitivity of BSBP (84.2%, 80/95) were significantly higher than that of CBS (74.8%, 72/95) in the patients with arthralgia (P = 0.039). When BSBP was interpreted with the results of elevated/positive anti-CCP antibody, its accuracy over CBS also became significantly higher (86.0%, 208/242 vs. 83.1%, 201/242 respectively, P = 0.021). The diagnostic odds ratio of BSBP positivity was higher than CBS positivity in the patients with arthralgia (26.0, 12.9-52.4 vs. 21.1, 10.8-41.3) and with arthritis (12.0, 4.9-29.4 vs. 10.0, 4.2-23.4). Both BSBP and CBS appear to provide acceptable accuracy and comparable diagnostic performance for diagnosis of RA. However, in the patients with arthralgia, BSBP was found to be more sensitive than CBS and more accurate when interpreted with the result of anti-CCP antibody. This could help physicians diagnose RA in daily clinical practice.
Adolescent
;
Adult
;
Aged
;
Arthralgia/complications
;
Arthritis, Rheumatoid/complications/*diagnosis
;
Autoantibodies/blood
;
Bone and Bones/diagnostic imaging
;
Female
;
*Gated Blood-Pool Imaging
;
Humans
;
Male
;
Middle Aged
;
Odds Ratio
;
Peptides, Cyclic/immunology
;
Positron-Emission Tomography
;
Prognosis
;
Retrospective Studies
;
Sensitivity and Specificity
;
Technetium/chemistry
;
*Tomography, X-Ray Computed
;
Young Adult
8.Study on the acid hydrolysis, fiber remodeling and bionics mineralization of rat tail tendon collagen type Ⅰ.
Zhan ZHANG ; Chun ZHANG ; Qiaofeng GUO
Journal of Zhejiang University. Medical sciences 2016;45(6):592-597
To produce bionic bone material that is consistent with human bone in chemical composition and molecular structure using rat tail tendon collagen type Ⅰ.The type Ⅰcollagen derived from rat tail was extracted by acetic acid to form collagen fibers. The reconstructed collagen fibers were placed in the mineralized solution to mimic bone mineralization for 2-6 days. Bone mineralization was observed by transmission electron microscopy and electron diffraction.Collagen fibers with characteristic D-Band structure were reconstructed by using rat tail tendon collagen type Ⅰ extracted with acid hydrolysis method. Transmission electron microscopy and electron diffraction showed that calcium hydroxyapatite precursor infiltrated into the collagen fibers, and the collagen fibers were partially mineralized after 2 days of mineralization; the collagen fibers were completely mineralized and bionic bone material of typeⅠ collagen/calcium hydroxyapatite was formed after 6 days of mineralization.The collagen type Ⅰ can be extracted from rat tail tendon by acid hydrolysis method, and can be reformed and mineralized to form the bionic bone material which mimics human bone in chemical composition and the molecular structure.
Animals
;
Biocompatible Materials
;
chemical synthesis
;
Bone Matrix
;
chemistry
;
growth & development
;
Bone Substitutes
;
chemical synthesis
;
Bone and Bones
;
anatomy & histology
;
chemistry
;
Calcification, Physiologic
;
Collagen Type I
;
biosynthesis
;
chemistry
;
ultrastructure
;
Humans
;
Hydroxyapatites
;
chemistry
;
Rats
;
Tail
;
Tendons
;
chemistry
;
ultrastructure
;
Tissue Engineering
;
methods
9.Biosafety of the Novel Vancomycin-loaded Bone-like Hydroxyapatite/Poly-amino Acid Bony Scaffold.
Zhi-Dong CAO ; Dian-Ming JIANG ; Ling YAN ; Jun WU
Chinese Medical Journal 2016;129(2):194-199
BACKGROUNDRecently, local sustained-release antibiotics systems have been developed because they can increase local foci of concentrated antibiotics without increasing the plasma concentration, and thereby effectively decrease any systemic toxicity and side effects. A vancomycin-loaded bone-like hydroxyapatite/poly-amino acid (V-BHA/PAA) bony scaffold was successfully fabricated with vancomycin-loaded poly lactic-co-glycolic acid microspheres and BHA/PAA, which was demonstrated to exhibit both porosity and perfect biodegradability. The aim of this study was to systematically evaluate the biosafety of this novel scaffold by conducting toxicity tests in vitro and in vivo.
METHODSAccording to the ISO rules for medical implant biosafety, for in vitro tests, the scaffold was incubated with L929 fibroblasts or rabbit noncoagulant blood, with simultaneous creation of positive control and negative control groups. The growth condition of L929 cells and hemolytic ratio were respectively evaluated after various incubation periods. For in vivo tests, a chronic osteomyelitis model involving the right proximal tibia of New Zealand white rabbits was established. After bacterial identification, the drug-loaded scaffold, drug-unloaded BHA/PAA, and poly (methyl methacrylate) were implanted, and a blank control group was also set up. Subsequently, the in vivo blood drug concentrations were measured, and the kidney and liver functions were evaluated.
RESULTSIn the in vitro tests, the cytotoxicity grades of V-BHA/PAA and BHA/PAA-based on the relative growth rate were all below 1. The hemolysis ratios of V-BHA/PAA and BHA/PAA were 2.27% and 1.42%, respectively, both below 5%. In the in vivo tests, the blood concentration of vancomycin after implantation of V-BHA/PAA was measured at far below its toxic concentration (60 mg/L), and the function and histomorphology of the liver and kidney were all normal.
CONCLUSIONAccording to ISO standards, the V-BHA/PAA scaffold is considered to have sufficient safety for clinical utilization.
Amino Acids ; chemistry ; Animals ; Bone and Bones ; Durapatite ; chemistry ; Microspheres ; Polymers ; chemistry ; Rabbits ; Tissue Scaffolds ; chemistry ; Vancomycin ; adverse effects
10.F-18 Sodium Fluoride Positron Emission Tomography/Computed Tomography for Detection of Thyroid Cancer Bone Metastasis Compared with Bone Scintigraphy.
Hyunjong LEE ; Won Woo LEE ; So Yeon PARK ; Sang Eun KIM
Korean Journal of Radiology 2016;17(2):281-288
OBJECTIVE: The aim of the study was to compare the diagnostic performances of F-18 sodium fluoride positron emission tomography/computed tomography (bone PET/CT) and bone scintigraphy (BS) for the detection of thyroid cancer bone metastasis. MATERIALS AND METHODS: We retrospectively enrolled 6 thyroid cancer patients (age = 44.7 ± 9.8 years, M:F = 1:5, papillary:follicular = 2:4) with suspected bone metastatic lesions in the whole body iodine scintigraphy or BS, who subsequently underwent bone PET/CT. Pathologic diagnosis was conducted for 4 lesions of 4 patients. RESULTS: Of the 17 suspected bone lesions, 10 were metastatic and 7 benign. Compared to BS, bone PET/CT exhibited superior sensitivity (10/10 = 100% vs. 2/10 = 20%, p = 0.008), and accuracy (14/17 = 82.4% vs. 7/17 = 41.2%, p < 0.025). The specificity (4/7 = 57.1%) of bone PET/CT was not significantly different from that of BS (5/7 = 71.4%, p > 0.05). CONCLUSION: Bone PET/CT may be more sensitive and accurate than BS for the detection of thyroid cancer bone metastasis.
Adult
;
Bone Neoplasms/*radiography/secondary
;
Bone and Bones/*radiography
;
Contrast Media/*chemistry
;
Female
;
Fluorine Radioisotopes/chemistry
;
Humans
;
Male
;
Middle Aged
;
Positron-Emission Tomography
;
Retrospective Studies
;
Sodium Fluoride/*chemistry
;
Thyroid Neoplasms/*pathology
;
Tomography, X-Ray Computed
;
Whole Body Imaging

Result Analysis
Print
Save
E-mail